53 research outputs found

    EQUULEUS: Initial Operation Results of an Artemis-1 CubeSat to the Earth—Moon Lagrange Point

    Get PDF
    EQUULEUS is a 6U CubeSat developed by the Japan Aerospace Exploration Agency (JAXA) and the University of Tokyo, aiming to reach the Earth-Moon second Lagrange point (EML2) and perform scientific observations there. After being inserted into a lunar transfer orbit by SLS Artemis-1 on November 16, 2022, the spacecraft completed checkout operations and successfully performed a delta-V maneuver and subsequent trajectory correction maneuver. This enabled a precise lunar flyby as planned and successful insertion into the orbit toward EML2, which will take advantage of multiple lunar gravity assists and the gravity of the Sun. EQUULEUS is equipped with a water propulsion system newly developed by the University of Tokyo, and became the first spacecraft in the world to successfully control its orbit beyond low Earth orbit using water propulsion. The successful precise orbit control in the Sun–Earth–Moon region by EQUULEUS, a 6U CubeSat weighing only 10kg, has opened the possibility of full-scale lunar and planetary exploration by CubeSats. This paper describes the early operational results of EQUULEUS during its flight to EML2, with special emphasis on its precise orbit determination, guidance, and control results

    BRCA1 Directs the Repair Pathway to Homologous Recombination by Promoting 53BP1 Dephosphorylation

    Get PDF
    Summary: BRCA1 promotes homologous recombination (HR) by activating DNA-end resection. By contrast, 53BP1 forms a barrier that inhibits DNA-end resection. Here, we show that BRCA1 promotes DNA-end resection by relieving the 53BP1-dependent barrier. We show that 53BP1 is phosphorylated by ATM in S/G2 phase, promoting RIF1 recruitment, which inhibits resection. 53BP1 is promptly dephosphorylated and RIF1 released, despite remaining unrepaired DNA double-strand breaks (DSBs). When resection is impaired by CtIP/MRE11 endonuclease inhibition, 53BP1 phosphorylation and RIF1 are sustained due to ongoing ATM signaling. BRCA1 depletion also sustains 53BP1 phosphorylation and RIF1 recruitment. We identify the phosphatase PP4C as having a major role in 53BP1 dephosphorylation and RIF1 release. BRCA1 or PP4C depletion impairs 53BP1 repositioning, EXO1 recruitment, and HR progression. 53BP1 or RIF1 depletion restores resection, RAD51 loading, and HR in PP4C-depleted cells. Our findings suggest that BRCA1 promotes PP4C-dependent 53BP1 dephosphorylation and RIF1 release, directing repair toward HR. : Following induction of DNA double-strand break, a pro-end-joining environment is created in G2 by transient 53BP1 phosphorylation and RIF1 recruitment. Here, Isono et al. show that, if timely repair does not ensue, BRCA1 promotes 53BP1 dephosphorylation and RIF1 release, favoring repair by homologous recombination. Keywords: ATM, DNA-end resection, BRCA1, 53BP1, RIF1, PP4C, NHEJ, H

    Potential Activity of Amrubicin as a Salvage Therapy for Merkel Cell Carcinoma

    Get PDF
    Merkel cell carcinoma (MCC) is a rare neuroendocrine carcinoma of the skin with an aggressive clinical course. Although anthracycline- and platinum-based regimens are empirically used as first-line treatments for metastatic or unresectable cases, no salvage therapy has been established. A 73-year-old man with platinum-refractory recurrent MCC was treated with amrubicin. The symptoms improved soon, and a partial response was achieved. A total of nine cycles of amrubicin were administered in nine months with manageable adverse events until disease progression was finally observed. The present findings suggest the potential of amrubicin monotherapy as a second-line therapy for patients with advanced/recurrent MCC

    ウンドウザイ ウンドウカク ガ ワザノ デキバエ ニアタエル エイキョウ ニツイテ ゼンポウ トウリツ カイテン トビ オ ウンドウ カダイ トシテ

    Get PDF
    This research clarifies how much exercise performers hold kinesthesia-like movement analogies, individually sensitive kinesthesia, and exercise materials as movement analogies in a forward handspring. Moreover, this study examines the relationship between exercise materials togethr with kinesthesia held by exercise performers and their performance. The result of this study indicates that each exercise performer has a variety of exercise materials and that the performer recognizes movements by his/her sense from among these exercise materials. Furthermore, according to the result, if an exercise performer does not have any exercise material that is regarded as a movement analogy, the exercise performer does not exhibit a high-skill performance. From these results, it is indicated that there is a risk that exercise materials may include unsuitable movement analogies for learning a movement. In relation to the kinesthesia, it is indicated that exercise performers recognize their movements as kinesthesia, but that some of them recognize their movements improperly

    Carbon-Ion Beam Irradiation Kills X-Ray-Resistant p53-Null Cancer Cells by Inducing Mitotic Catastrophe

    Get PDF
    Background and Purpose: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies.Copyright:Materials and Methods: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/ + and p53-/-, respectively) were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA doublestrand breaks (DSBs) by immunostaining of phosphorylated H2AX (γH2AX), and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3.Results: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring longretained DSBs at 24 h post-irradiation.Conclusions: Efficient induction of mitotic catastrophe in apoptosis-resistant p53- deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment

    Robust detection of undifferentiated iPSC among differentiated cells

    No full text
    Recent progress in human induced pluripotent stem cells (iPSC) technologies suggest that iPSC application in regenerative medicine is a closer reality. Numerous challenges prevent iPSC application in the development of numerous tissues and for the treatment of various diseases. A key concern in therapeutic applications is the safety of the cell products to be transplanted into patients. Here, we present novel method for detecting residual undifferentiated iPSCs amongst directed differentiated cells of all three germ lineages. Marker genes, which are expressed specifically and highly in undifferentiated iPSC, were selected from single cell RNA sequence data to perform robust and sensitive detection of residual undifferentiated cells in differentiated cell products. ESRG (Embryonic Stem Cell Related), CNMD (Chondromodulin), and SFRP2 (Secreted Frizzled Related Protein 2) were well-correlated with the actual amounts of residual undifferentiated cells and could be used to detect residual cells in a highly sensitive manner using qPCR. In addition, such markers could be used to detect residual undifferentiated cells from various differentiated cells, including hepatic cells and pancreatic cells for the endodermal lineage, endothelial cells and mesenchymal cells for the mesodermal lineage, and neural cells for the ectodermal lineage. Our method facilitates robust validation and could enhance the safety of the cell products through the exclusion of undifferentiated iPSC.ISSN:2045-232

    High temporal resolution proteome and phosphoproteome profiling of stem cell-derived hepatocyte development

    Get PDF
    Primary human hepatocytes are widely used to evaluate liver toxicity of drugs, but they are scarce and demanding to culture. Stem cell-derived hepatocytes are increasingly discussed as alternatives. To obtain a better appreciation of the molecular processes during the differentiation of induced pluripotent stem cells into hepatocytes, we employ a quantitative proteomic approach to follow the expression of 9,000 proteins, 12,000 phosphorylation sites, and 800 acetylation sites over time. The analysis reveals stage-specific markers, a major molecular switch between hepatic endoderm versus immature hepatocyte-like cells impacting, e.g., metabolism, the cell cycle, kinase activity, and the expression of drug transporters. Comparing the proteomes of two- (2D) and three-dimensional (3D)-derived hepatocytes with fetal and adult liver indicates a fetal-like status of the in vitro models and lower expression of important ADME/Tox proteins. The collective data enable constructing a molecular roadmap of hepatocyte development that serves as a valuable resource for future research.ISSN:2666-3864ISSN:2211-124
    corecore