227 research outputs found

    A replication study confirmed the EDAR gene to be a major contributor to population differentiation regarding head hair thickness in Asia

    Get PDF
    Hair morphology is a highly divergent phenotype among human populations. We recently reported that a nonsynonymous SNP in the ectodysplasin A receptor (EDAR 1540T/C) is associated with head hair fiber thickness in an ethnic group in Thailand (Thai-Mai) and an Indonesian population. However, these Southeast Asian populations are genetically and geographically close, and thus the genetic contribution of EDAR to hair morphological variation in the other Asian populations has remained unclear. In this study, we examined the association of 1540T/C with hair morphology in a Japanese population (Northeast Asian). As observed in our previous study, 1540T/C showed a significant association with hair cross-sectional area (P = 2.7 × 10−6) in Japanese. When all populations (Thai-Mai, Indonesian, and Japanese) were combined, the association of 1540T/C was stronger (P = 3.8 × 10−10) than those of age, sex, and population. These results indicate that EDAR is the genetic determinant of hair thickness as well as a strong contributor to hair fiber thickness variation among Asian populations

    Noise robust 2D bird localization via sound using microphone arrays

    Get PDF
    Birds in the wild are difficult to localize, because their sizes tend to be small, they move swiftly, and they are often visually occluded. However, their location information is crucial for ethological studies on birds' behaviour. Recently, automating the process has been studied as a hot topic, where spatial sensors and sensor networks are commonly used. To avoid the visual occlusion problem, many studies focus on acoustic signal processing by applying microphone arrays and perform 1D azimuth localization through bird songs. In this study, we perform 2D sound source localization in the Cartesian coordinates using azimuths from multiple microphone arrays. To estimate the exact bird's location, we calculate the intersection points of these azimuth lines. Although this approach is simple and easy to be implemented, it has two main issues. One is that even small noise interference in azimuth values results in corrupting the localization data. This leads to a problem, where the intersection points between the azimuth lines do not intersect in one point for a single bird, but in several points. This proves difficulty in estimating the exact location of each bird. Especially in a far-field application, even small noise corruption leads to large localization errors. The other issue is that in the bird's natural habitat, elements such as leaves, grass and rivers are natural noise sources. It is difficult to extract the bird songs in such a noisy environment. We propose an algorithm involving statistic methods, sound feature analysis and machine learning. Based on this approach, a noise robust bird localization system has been established. We have performed numerous simulations to further understand the limitations of the system. Based on the results we have also derived the system's design guidelines, describing how the results change depending on the number of microphone arrays, signal-to-noise ratio, bird's distance from the devices, array's transfer function, type of the singing bird and specific parameter settings used in the algorithms. Such detailed guidelines support interested researchers in creating a similar system, which can contribute to ethological researches

    Thermal dependency of shell growth, microstructure, and stable isotopes in laboratory‐reared Scapharca broughtonii (Mollusca: Bivalvia)

    Get PDF
    We experimentally examined the growth, microstructure, and chemistry of shells of the bloody clam, Scapharca broughtonii (Mollusca: Bivalvia), reared at five temperatures (13, 17, 21, 25, and 29°C) with a constant pCO2 condition (∼450 μatm). In this species, the exterior side of the shell is characterized by a composite prismatic structure; on the interior side, it has a crossed lamellar structure on the interior surface. We previously found a negative correlation between temperature and the relative thickness of the composite prismatic structure in field‐collected specimens. In the reared specimens, the relationship curve between temperature and the growth increment of the composite prismatic structure was humped shaped, with a maximum at 17°C, which was compatible with the results obtained in the field‐collected specimens. In contrast, the thickness of the crossed lamellar structure was constant over the temperature range tested. These results suggest that the composite prismatic structure principally accounts for the thermal dependency of shell growth, and this inference was supported by the finding that shell growth rates were significantly correlated with the thickness of the composite prismatic structure. We also found a negative relationship between the rearing temperature and δ18O of the shell margin, in close quantitative agreement with previous reports. The findings presented here will contribute to the improved age determination of fossil and recent clams based on seasonal microstructural records

    PKN3 is the major regulator of angiogenesis and tumor metastasis in mice

    Get PDF
    PKN, a conserved family member related to PKC, was the first protein kinase identified as a target of the small GTPase Rho. PKN is involved in various functions including cytoskeletal arrangement and cell adhesion. Furthermore, the enrichment of PKN3 mRNA in some cancer cell lines as well as its requirement in malignant prostate cell growth suggested its involvement in oncogenesis. Despite intensive research efforts, physiological as well as pathological roles of PKN3 in vivo remain elusive. Here, we generated mice with a targeted deletion of PKN3. The PKN3 knockout (KO) mice are viable and develop normally. However, the absence of PKN3 had an impact on angiogenesis as evidenced by marked suppressions of micro-vessel sprouting in ex vivo aortic ring assay and in vivo corneal pocket assay. Furthermore, the PKN3 KO mice exhibited an impaired lung metastasis of melanoma cells when administered from the tail vein. Importantly, PKN3 knock-down by small interfering RNA (siRNA) induced a glycosylation defect of cell-surface glycoproteins, including ICAM-1, integrin β1 and integrin α5 in HUVECs. Our data provide the first in vivo genetic demonstration that PKN3 plays critical roles in angiogenesis and tumor metastasis, and that defective maturation of cell surface glycoproteins might underlie these phenotypes

    Forgeability of AZ Series Magnesium Alloy produced by Twin Roll Casting

    Full text link
    Plastic forming of magnesium alloy is hardly reported because of its low forgeability. The productions of magnesium alloy are mainly produced by casting. Typical wrought magnesium alloy is AZ31. Magnesium-aluminum alloy indicates maximum elongation when the composition includes 3% aluminum. When the magnesium alloy includes over 3% aluminum, its elongation slightly decreases. Therefore, AZ31 that include 3% aluminum and 1% zinc is generally used for plastic forming. The more increasing aluminum composition, the larger 0.2% proof stress becomes. However its forgeability is decreasing because of precipitation of β phase such as Mg17Al12. It is supposed that the β phase is refined by rapid cooling casting process such as twin roll casting. In this paper, the magnesium alloy thick sheet of AZ91, AZ121 and AZ131 for hot forging, that include 9%, 12% and 13% aluminum composition respectively, was produced by twin roll strip casting process. And the forgeability of high aluminum containing magnesium alloy was investigated by die forging. As a result, it was possible to forge their magnesium alloys

    高齢で発症した重症筋無力症は重症化しやすい

    Get PDF
    Objective: The continuous increase in the number of patients presenting with late-onset myasthenia gravis (LOMG) underscores the need for a better understanding of the clinical course and the establishment of an optimal therapeutic strategy. We aimed to clarify factors associated with clinical outcomes in LOMG. Methods: We retrospectively reviewed the clinical profiles of 40 patients with early-onset MG (EOMG) (onset age: 49 years or younger), 30 patients with non-elderly LOMG (onset age: 50–64 years), and 28 patients with elderly LOMG(onset age: 65 years or older) and compared the subgroups according to onset age and thymus status. The evaluated parameters were MGFA classification before treatment, MG-ADL score, complicating diseases, antibody titer, treatment, and MGFA post-intervention status. Results: Elderly LOMG patients showed transition to generalized symptoms at a higher frequency and underwent thymectomyless frequently than EOMG and non-elderly LOMG patients (p < 0.001). The frequencies of crisis and plasmapheresis were significantly lower in thymectomized LOMG patients without thymoma than in thymectomized LOMG patients with thymoma or non-thymectomized LOMG patients (p < 0.01, P < 0.05, respectively). However, the outcome was not significantly different. All of the thymectomized LOMG patients without thymoma presenting with hyperplasia or thymic cyst had a favorable clinical course. Conclusions: Our study showed that elderly LOMG patients are more prone to severity, suggesting that they require aggressive immunomodulatory therapy
    corecore