1,734 research outputs found

    Comparing the Ca II H and K Emission Lines in Red Giant Stars

    Full text link
    Measurements of the asymmetry of the emission peaks in the core of the Ca II H line for 105 giant stars are reported. The asymmetry is quantified with the parameter V/R, defined as the ratio between the maximum number of counts in the blueward peak and the redward peak of the emission profile. The Ca II H and K emission lines probe the differential motion of certain chromospheric layers in the stellar atmosphere. Data on V/R for the Ca II K line are drawn from previous papers and compared to the analogous H line ratio, the H and K spectra being from the same sets of observations. It is found that the H line V/R value is +0.04 larger, on average, than the equivalent K line ratio, however, the difference varies with B-V color. Red giants cooler than B-V = 1.2 are more likely to have the H line V/R larger than the K line V/R, whereas the opposite is true for giants hotter than B-V = 1.2. The differences between the Ca II H and K line asymmetries could be caused by the layers of chromospheric material from which these emission features arise moving with different velocities in an expanding outflow.Comment: 36 pages, 12 figures, 2 tables. Accepted to PASP. Corrected a typo in Table

    Injectors for Multipoint Injection

    Get PDF
    An injector for a multipoint combustor system includes an inner air swirler which defines an interior flow passage and a plurality of swirler inlet ports in an upstream portion thereof. The inlet ports are configured and adapted to impart swirl on flow in the interior flow passage. An outer air cap is mounted outboard of the inner swirler. A fuel passage is defined between the inner air swirler and the outer air cap, and includes a discharge outlet between downstream portions of the inner air swirler and the outer air cap for issuing fuel for combustion. The outer air cap defines an outer air circuit configured for substantially unswirled injection of compressor discharge air outboard of the interior flow passage

    Properties of the cluster population of NGC 1566 and their implications

    Get PDF
    We present results of a photometric study into the cluster population of NGC 1566, a nearby grand design spiral galaxy, sampled out to a Galactocentric radius of 5.5\approx 5.5 kpc. The shape of the mass-limited age distribution shows negligible variation with radial distance from the centre of the galaxy, and demonstrates three separate sections, with a steep beginning, flat middle and steep end. The luminosity function can be approximated by a power law at lower luminosities with evidence of a truncation at higher luminosity. The power law section of the luminosity function of the galaxy is best fitted by an index 2\approx -2, in agreement with other studies, and is found to agree with a model luminosity function, which uses an underlying Schechter mass function. The recovered power law slope of the mass distribution shows a slight steepening as a function of galactocentric distance, but this is within error estimates. It also displays a possible truncation at the high mass end. Additionally, the cluster formation efficiency (Γ\Gamma) and the specific U-band luminosity of clusters (TL(U)T_L(U)) are calculated for NGC 1566 and are consistent with values for similar galaxies. A difference in NGC 1566, however, is that the fairly high star formation rate is in contrast with a low ΣSFR\Sigma_{SFR} and Γ\Gamma, indicating that Γ\Gamma can only be said to depend strongly on ΣSFR\Sigma_{SFR}, not the star formation rate

    Sizes and Shapes of Young Star Cluster Light Profiles in M83

    Get PDF
    We measure the radii and two-dimensional light profiles of a large sample of young, massive star clusters in M83 using archival HST/WFC3 imaging of seven adjacent fields. We use GALFIT to fit the two-dimensional light profiles of the clusters, from which we find effective (half-light) radii, core radii, and slopes of the power-law (EFF) profile (η\eta). We find lognormal distributions of effective radius and core radius, with medians of \approx2.5 pc and \approx1.3 pc, respectively. Our results provide strong evidence for a characteristic size of young, massive clusters. The average effective radius and core radius increase somewhat with cluster age. Little to no change in effective radius is observed with increasing galactocentric distance, except perhaps for clusters younger than 100 Myr. We find a shallow correlation between effective radius and mass for the full cluster sample, but a stronger correlation is present for clusters 200-300 Myr in age. Finally, the majority of the clusters are best fit by an EFF model with index η3.0\eta\leq3.0. There is no strong evidence for change in η\eta with cluster age, mass, or galactocentric distance. Our results suggest that clusters emerge from early evolution with similar radii and are not strongly affected by the tidal field of M83. Mass loss due to stellar evolution and/or GMC interactions appear to dominate cluster expansion in the age range we study.Comment: 34 pages, 11 figures, 3 tables, accepted by MNRAS. Machine-readable table attached (full version of Table 3). To obtain, download the source file from the "Other formats" link abov

    Filamentary Star Formation in NGC 1275

    Get PDF
    We examine the star formation in the outer halo of NGC~1275, the central galaxy in the Perseus cluster (Abell 426), using far ultraviolet and optical images obtained with the Hubble Space Telescope. We have identified a population of very young, compact star clusters with typical ages of a few Myr. The star clusters are organised on multiple-kiloparsec scales. Many of these star clusters are associated with "streaks" of young stars, the combination of which has a cometary appearance. We perform photometry on the star clusters and diffuse stellar streaks, and fit their spectral energy distributions to obtain ages and masses. These young stellar populations appear to be normal in terms of their masses, luminosities and cluster formation efficiency; <10% of the young stellar mass is located in star clusters. Our data suggest star formation is associated with the evolution of some of the giant gas filaments in NGC~1275 that become gravitationally unstable on reaching and possibly stalling in the outer galaxy. The stellar streaks then could represent stars moving on ballistic orbits in the potential well of the galaxy cluster. We propose a model where star-forming filaments, switched on ~50~Myr ago and are currently feeding the growth of the NGC~1275 stellar halo at a rate of ~2-3 solar masses per year. This type of process may also build stellar halos and form isolated star clusters in the outskirts of youthful galaxies.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    The Snapshot Hubble U-Band Cluster Survey (SHUCS) II. Star Cluster Population of NGC 2997

    Get PDF
    We study the star cluster population of NGC 2997, a giant spiral galaxy located at 9.5 Mpc and targeted by the Snapshot Hubble U-band Cluster Survey (SHUCS). Combining our U-band imaging from SHUCS with archival BVI imaging from HST, we select a high confidence sample of clusters in the circumnuclear ring and disk through a combination of automatic detection procedures and visual inspection. The cluster luminosity functions in all four filters can be approximated by power-laws with indices of 1.7-1.7 to 2.3-2.3. Some deviations from pure power-law shape are observed, hinting at the presence of a high-mass truncation in the cluster mass function. However, upon inspection of the cluster mass function, we find it is consistent with a pure power-law of index 2.2±0.2-2.2\pm0.2 despite a slight bend at \sim2.5×1042.5\times10^{4} M_{\odot}. No statistically significant truncation is observed. From the cluster age distributions, we find a low rate of disruption (ζ0.1\zeta\sim-0.1) in both the disk and circumnuclear ring. Finally, we estimate the cluster formation efficiency (Γ\Gamma) over the last 100 Myr in each region, finding 7±27\pm2% for the disk, 12±412\pm4% for the circumnuclear ring, and 10±310\pm3% for the entire UBVI footprint. This study highlights the need for wide-field UBVI coverage of galaxies to study cluster populations in detail, though a small sample of clusters can provide significant insight into the characteristics of the population.Comment: 31 pages, 9 figures, accepted to the A
    corecore