44 research outputs found

    Disturbance and stress - different meanings in ecological dynamics?

    Get PDF
    There is an increasing frequency of papers addressing disturbance and stress in ecology without clear delimitation of their meaning. Some authors use the terms disturbance and stress exclusively as impacts, while others use them for the entire process, including both causes and effects. In some studies, the disturbance is considered as a result of a temporary impact, which is positive for the ecosystem, while stress is a negative, debilitating impact. By developing and testing simple theoretical models, the authors propose to differentiate disturbance and stress by frequency. If the frequency of the event enables the variable to reach a dynamic equilibrium which might be exhibited without this event, then the event (plus its responses) is a disturbance for the system. If frequency prevents the variable’s return to similar pre-event dynamics and drives or shifts it to a new trajectory, then we are facing stress. The authors propose that changes triggered by the given stimuli can be evaluated on an absolute scale, therefore, direction of change of the variable must not be used to choose one term or the other, i.e. to choose between stress and disturbance

    Effects of Local and Landscape Factors on Population Dynamics of a Cotton Pest

    Get PDF
    BACKGROUND: Many polyphagous pests sequentially use crops and uncultivated habitats in landscapes dominated by annual crops. As these habitats may contribute in increasing or decreasing pest density in fields of a specific crop, understanding the scale and temporal variability of source and sink effects is critical for managing landscapes to enhance pest control. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated how local and landscape characteristics affect population density of the western tarnished plant bug, Lygus hesperus (Knight), in cotton fields of the San Joaquin Valley in California. During two periods covering the main window of cotton vulnerability to Lygus attack over three years, we examined the associations between abundance of six common Lygus crops, uncultivated habitats and Lygus population density in these cotton fields. We also investigated impacts of insecticide applications in cotton fields and cotton flowering date. Consistent associations observed across periods and years involved abundances of cotton and uncultivated habitats that were negatively associated with Lygus density, and abundance of seed alfalfa and cotton flowering date that were positively associated with Lygus density. Safflower and forage alfalfa had variable effects, possibly reflecting among-year variation in crop management practices, and tomato, sugar beet and insecticide applications were rarely associated with Lygus density. Using data from the first two years, a multiple regression model including the four consistent factors successfully predicted Lygus density across cotton fields in the last year of the study. CONCLUSIONS/SIGNIFICANCE: Our results show that the approach developed here is appropriate to characterize and test the source and sink effects of various habitats on pest dynamics and improve the design of landscape-level pest management strategies

    Evaluation of Location-Specific Predictions by a Detailed Simulation Model of Aedes aegypti Populations

    Get PDF
    Skeeter Buster is a stochastic, spatially explicit simulation model of Aedes aegypti populations, designed to predict the outcome of vector population control methods. In this study, we apply the model to two specific locations, the cities of Iquitos, Peru, and Buenos Aires, Argentina. These two sites differ in the amount of field data that is available for location-specific customization. By comparing output from Skeeter Buster to field observations in these two cases we evaluate population dynamics predictions by Skeeter Buster with varying degrees of customization.Skeeter Buster was customized to the Iquitos location by simulating the layout of houses and the associated distribution of water-holding containers, based on extensive surveys of Ae. aegypti populations and larval habitats that have been conducted in Iquitos for over 10 years. The model is calibrated by adjusting the food input into various types of containers to match their observed pupal productivity in the field. We contrast the output of this customized model to the data collected from the natural population, comparing pupal numbers and spatial distribution of pupae in the population. Our results show that Skeeter Buster replicates specific population dynamics and spatial structure of Ae. aegypti in Iquitos. We then show how Skeeter Buster can be customized for Buenos Aires, where we only had Ae. aegypti abundance data that was averaged across all locations. In the Argentina case Skeeter Buster provides a satisfactory simulation of temporal population dynamics across seasons.This model can provide a faithful description of Ae. aegypti populations, through a process of location-specific customization that is contingent on the amount of data available from field collections. We discuss limitations presented by some specific components of the model such as the description of food dynamics and challenges that these limitations bring to model evaluation

    Climate change, phenological shifts, eco-evolutionary responses and population viability: toward a unifying predictive approach

    Get PDF
    The debate on emission targets of greenhouse gasses designed to limit global climate change has to take into account the ecological consequences. One of the clearest ecological consequences is shifts in phenology. Linking these shifts to changes in population viability under various greenhouse gasses emission scenarios requires a unifying framework. We propose a box-in-a-box modeling approach that couples population models to phenological change. This approach unifies population modeling with both ecological responses to climate change as well as evolutionary processes. We advocate a mechanistic embedded correlative approach, where the link from genes to population is established using a periodic matrix population model. This periodic model has several major advantages: (1) it can include complex seasonal behaviors allowing an easy link with phenological shifts; (2) it provides the structure of the population at each phase, including the distribution of genotypes and phenotypes, allowing a link with evolutionary processes; and (3) it can incorporate the effect of climate at different time periods. We believe that the way climatologists have approached the problem, using atmosphere–ocean coupled circulation models in which components are gradually included and linked to each other, can provide a valuable example to ecologists. We hope that ecologists will take up this challenge and that our preliminary modeling framework will stimulate research toward a unifying predictive model of the ecological consequences of climate change

    A Research Agenda for Helminth Diseases of Humans: Modelling for Control and Elimination

    Get PDF
    Mathematical modelling of helminth infections has the potential to inform policy and guide research for the control and elimination of human helminthiases. However, this potential, unlike in other parasitic and infectious diseases, has yet to be realised. To place contemporary efforts in a historical context, a summary of the development of mathematical models for helminthiases is presented. These efforts are discussed according to the role that models can play in furthering our understanding of parasite population biology and transmission dynamics, and the effect on such dynamics of control interventions, as well as in enabling estimation of directly unobservable parameters, exploration of transmission breakpoints, and investigation of evolutionary outcomes of control. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. A research and development agenda for helminthiasis modelling is proposed based on identified gaps that need to be addressed for models to become useful decision tools that can support research and control operations effectively. This agenda includes the use of models to estimate the impact of large-scale interventions on infection incidence; the design of sampling protocols for the monitoring and evaluation of integrated control programmes; the modelling of co-infections; the investigation of the dynamical relationship between infection and morbidity indicators; the improvement of analytical methods for the quantification of anthelmintic efficacy and resistance; the determination of programme endpoints; the linking of dynamical helminth models with helminth geostatistical mapping; and the investigation of the impact of climate change on human helminthiases. It is concluded that modelling should be embedded in helminth research, and in the planning, evaluation, and surveillance of interventions from the outset. Modellers should be essential members of interdisciplinary teams, propitiating a continuous dialogue with end users and stakeholders to reflect public health needs in the terrain, discuss the scope and limitations of models, and update biological assumptions and model outputs regularly. It is highlighted that to reach these goals, a collaborative framework must be developed for the collation, annotation, and sharing of databases from large-scale anthelmintic control programmes, and that helminth modellers should join efforts to tackle key questions in helminth epidemiology and control through the sharing of such databases, and by using diverse, yet complementary, modelling approaches
    corecore