18 research outputs found

    Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    Get PDF
    Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25°  ×  0.3125°, 2°  ×  2.5°, 4°  ×  5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25°  ×  0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25°  ×  0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications

    Transport of Asian ozone pollution into surface air over the western United States in spring

    Get PDF
    Many prior studies clearly document episodic Asian pollution in the western U.S. free troposphere. Here, we examine the mechanisms involved in the transport of Asian pollution plumes into western U.S. surface air through an integrated analysis of in situ and satellite measurements in May–June 2010 with a new global high-resolution (∼50 × 50 km2) chemistry-climate model (GFDL AM3). We find that AM3 with full stratosphere-troposphere chemistry nudged to reanalysis winds successfully reproduces observed sharp ozone gradients above California, including the interleaving and mixing of Asian pollution and stratospheric air associated with complex interactions of midlatitude cyclone air streams. Asian pollution descends isentropically behind cold fronts; at ∼800 hPa a maximum enhancement to ozone occurs over the southwestern U.S., including the densely populated Los Angeles Basin. During strong episodes, Asian emissions can contribute 8–15 ppbv ozone in the model on days when observed daily maximum 8-h average ozone (MDA8 O3) exceeds 60 ppbv. We find that in the absence of Asian anthropogenic emissions, 20% of MDA8 O3 exceedances of 60 ppbv in the model would not have occurred in the southwestern USA. For a 75 ppbv threshold, that statistic increases to 53%. Our analysis indicates the potential for Asian emissions to contribute to high-O3 episodes over the high-elevation western USA, with implications for attaining more stringent ozone standards in this region. We further demonstrate a proof-of-concept approach using satellite CO column measurements as a qualitative early warning indicator to forecast Asian ozone pollution events in the western U.S. with lead times of 1–3 days

    Identifying Examinees Who Possess Distinct and Reliable Subscores When Added Value is Lacking for the Total Sample

    Get PDF
    Research has demonstrated that although subdomain information may provide no added value beyond the total score, in some contexts such information is of utility to particular demographic subgroups (Sinharay & Haberman, 2014). However, it is argued that the utility of reporting subscores for an individual should not be based on one’s manifest characteristics (e.g., gender or ethnicity), but rather on individual needs for diagnostic information, which is driven by multidimensionality in subdomain scores. To improve the validity of diagnostic information, this study proposed the use of Mahalanobis Distance and HT indices to assess whether an individual’s data significantly departs from unidimensionality. Those examinees that were found to differ significantly were then assessed separately for subscore added value via Haberman’s (2008) procedure. To this end, simulation analyses were conducted to evaluate Type I error, power, and recovery of subscore added value classifications for various levels of subdomain test lengths, subdomain inter-correlations, and proportions of multidimensionality in the total sample. Results demonstrated that the HT index possessed around 100% power across all conditions, while maintaining Type I error below 5%, which led to nearly perfect recovery of subscore added value classifications. In contrast, the power rates for Mahalanobis Distance were much lower ranging from 13% to 61% with Type I errors maintained at the nominal level of 5%. Although the power rates were below the desired criterion of 80%, the cases identified as aberrant using this method were found to have greater variability between subdomain scores, increased reliability, and lower observed subdomain correlations when compared to the generated data. As a result, outlier cases were found to have subscore added value for nearly 100% of cases across conditions even when the generated multidimensional data did not possess subscore added value. These results were cross-validated using a large-scale high-stakes test in which the Mahalanobis Distance measure was found to identify 6.57% of 8,803 test-takers that possessed subscores with added-value who otherwise would have been masked by the unidimensionality of the total sample. Overall, this study suggests that the Mahalanobis Distance measure shows some promise in identifying examinees with multidimensional score profiles

    Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US

    Get PDF
    Formation of organic nitrates (RONO2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NOx), but the chemistry of RONO2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO2) in the GEOS-Chem global chemical transport model with  ∼  25  x  25 km2 resolution over North America. We evaluate the model using aircraft (SEAC4RS) and ground-based (SOAS) observations of NOx, BVOCs, and RONO2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25-50 % of observed RONO2 in surface air, and we find that another 10 % is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10 % of observed boundary layer RONO2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO3 accounts for 60 % of simulated gas-phase RONO2 loss in the boundary layer. Other losses are 20 % by photolysis to recycle NOx and 15 % by dry deposition. RONO2 production accounts for 20 % of the net regional NOx sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NOx emissions. This segregation implies that RONO2 production will remain a minor sink for NOx in the Southeast US in the future even as NOx emissions continue to decline

    Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    Get PDF
    Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NO_x pathway (where peroxy radicals react with NO) or by low-NO_x pathways (where peroxy radicals react by alternate channels, mostly with HO_2). We used mixed layer observations from the SEAC^4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25°  ×  0.3125°, 2°  ×  2.5°, 4°  ×  5°) to simulate this chemistry under high-isoprene, variable-NO_x conditions. Observations of isoprene and NO_x over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25°  ×  0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NO_x pathway in the model at 0.25°  ×  0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NO_x, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NO_x pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NO_x to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NO_y) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications

    Airborne measurements of organosulfates over the continental U.S.

    Get PDF
    Organosulfates are important secondary organic aerosol (SOA) components and good tracers for aerosol heterogeneous reactions. However, the knowledge of their spatial distribution, formation conditions, and environmental impact is limited. In this study, we report two organosulfates, an isoprene-derived isoprene epoxydiols (IEPOX) (2,3-epoxy-2-methyl-1,4-butanediol) sulfate and a glycolic acid (GA) sulfate, measured using the NOAA Particle Analysis Laser Mass Spectrometer (PALMS) on board the NASA DC8 aircraft over the continental U.S. during the Deep Convective Clouds and Chemistry Experiment (DC3) and the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). During these campaigns, IEPOX sulfate was estimated to account for 1.4% of submicron aerosol mass (or 2.2% of organic aerosol mass) on average near the ground in the southeast U.S., with lower concentrations in the western U.S. (0.2–0.4%) and at high altitudes (<0.2%). Compared to IEPOX sulfate, GA sulfate was more uniformly distributed, accounting for about 0.5% aerosol mass on average, and may be more abundant globally. A number of other organosulfates were detected; none were as abundant as these two. Ambient measurements confirmed that IEPOX sulfate is formed from isoprene oxidation and is a tracer for isoprene SOA formation. The organic precursors of GA sulfate may include glycolic acid and likely have both biogenic and anthropogenic sources. Higher aerosol acidity as measured by PALMS and relative humidity tend to promote IEPOX sulfate formation, and aerosol acidity largely drives in situ GA sulfate formation at high altitudes. This study suggests that the formation of aerosol organosulfates depends not only on the appropriate organic precursors but also on emissions of anthropogenic sulfur dioxide (SO2), which contributes to aerosol acidity. Key Points IEPOX sulfate is an isoprene SOA tracer at acidic and low NO conditions Glycolic acid sulfate may be more abundant than IEPOX sulfate globally SO2 impacts IEPOX sulfate by increasing aerosol acidity and water uptak

    Observational Constraints on the Oxidation of NO_x in the Upper Troposphere

    Get PDF
    NO_x (NO_x ≡ NO + NO_2) regulates O_3 and HO_x (HO_x ≡ OH + HO_2) concentrations in the upper troposphere. In the laboratory, it is difficult to measure rates and branching ratios of the chemical reactions affecting NO_x at the low temperatures and pressures characteristic of the upper troposphere, making direct measurements in the atmosphere especially useful. We report quasi-Lagrangian observations of the chemical evolution of an air parcel following a lightning event that results in high NO_x concentrations. These quasi-Lagrangian measurements obtained during the Deep Convective Clouds and Chemistry experiment are used to characterize the daytime rates for conversion of NOx to different peroxy nitrates, the sum of alkyl and multifunctional nitrates, and HNO_3. We infer the following production rate constants [in (cm^3/molecule)/s] at 225 K and 230 hPa: 7.2(±5.7) × 10^(–12) (CH_3O_2NO_2), 5.1(±3.1) × 10^(–13) (HO_2NO_2), 1.3(±0.8) × 10^(–11) (PAN), 7.3(±3.4) × 10^(–12) (PPN), and 6.2(±2.9) × 10^(–12) (HNO_3). The HNO_3 and HO_2NO_2 rates are ∼30–50% lower than currently recommended whereas the other rates are consistent with current recommendations to within ±30%. The analysis indicates that HNO_3 production from the HO_2 and NO reaction (if any) must be accompanied by a slower rate for the reaction of OH with NO_2, keeping the total combined rate for the two processes at the rate reported for HNO_3 production above

    Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC&lt;sup&gt;4&lt;/sup&gt;RS) and ground-based (SOAS) observations in the Southeast US

    Get PDF
    Formation of organic nitrates (RONO2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NOx), but the chemistry of RONO2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO2) in the GEOS-Chem global chemical transport model with  ∼  25  x  25 km2 resolution over North America. We evaluate the model using aircraft (SEAC4RS) and ground-based (SOAS) observations of NOx, BVOCs, and RONO2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25-50 % of observed RONO2 in surface air, and we find that another 10 % is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10 % of observed boundary layer RONO2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO3 accounts for 60 % of simulated gas-phase RONO2 loss in the boundary layer. Other losses are 20 % by photolysis to recycle NOx and 15 % by dry deposition. RONO2 production accounts for 20 % of the net regional NOx sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NOx emissions. This segregation implies that RONO2 production will remain a minor sink for NOx in the Southeast US in the future even as NOx emissions continue to decline
    corecore