Supporting Information

Observational Constraints on the Oxidation of NO_x in the Upper Troposphere

Benjamin. A. Nault,¹ Charity Garland,² Paul J. Wooldridge,² William H. Brune,³ Pedro Campuzano-Jost,⁴ John D. Crounse,⁵ Douglas A. Day,⁴ Jack Dibb,⁶ Samuel R. Hall,⁷ L. Gregory Huey,⁸ José L. Jimenez,⁴ Xiaoxi Liu,⁸ Jingqiu Mao,⁹ Tomas Mikoviny,¹⁰ Jeff Peischl,¹¹ Ilana B. Pollack,^{11,12} Xinrong Ren,¹³ Thomas B. Ryerson,¹¹ Eric Scheuer,⁶ Kirk Ullmann,⁷ Paul O. Wennberg,¹⁴ Armin Wisthaler,¹⁵ Li Zhang,³ Ronald C. Cohen^{1,2,*}

¹Department of Earth and Planetary Science, University of California, Berkeley, California 94709, United States

²Department of Chemistry, University of California, Berkeley, California 94709, United States

³Department of Meteorology, Pennsylvania State University, University Park, Pennsylvania 16802, United States

⁴Cooperative Institute for Research in the Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States

⁵Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States

⁶Earth Systems Research Center, Institute for the Study of Earth Oceans and Space, University of New Hampshire, Durham, New Hampshire 03824, United States

⁷Atmospheric Chemistry Division, National Center for Atmospheric Research (NCAR), Boulder, Colorado 80307, United States

⁸School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

⁹National Oceanic and Atmospheric Administration Geophyiscal Fluid Dynamics Laboratory, Princeton, New Jersey 08540, United States

¹⁰Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831, United States

¹¹Chemical Sciences Division, Earth System Research Lab, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, United States

¹²Now at: Atmospheric Science Department, Colorado State University, Fort Collins, Colorado 80523, United States

¹³Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, Maryland 20740, United States

¹⁴Division of Engineering and Applied Science and Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States

¹⁵Institute of Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria

Corresponding Author

*Phone: (510)-642-2735. E-mail: rccohen@berkeley.edu

Measurements Intercomparison	S3
Calculation of Alkyl and Multifunctional Nitrate	S4
Calculation of Alkyl and Multifunctional Nitrate in Aerosol-Phase	S4–S5
Description of GEOS-Chem Model	S 5
Figure S1	S 6
Figure S2	S7
Figure S3	S8
Figure S4	S9
Figure S5	S10
Table S1	S11
Table S2	S11
Table S3	S12
Table S4	S13
Table S5	S15

Measurement Intercomparisons

During DC3, the NASA DC-8 payload included measurements of speciated (CH₃O₂NO₂, HO₂NO₂, PAN, and PPN) and total peroxy nitrates, gas-phase, and gas- and particle-phase HNO₃, allowing for intercomparions of the total peroxy nitrates and HNO_{3(g+p)} for the entire mission. Also, the NSF National Center for Atmospheric Research GV and DC-8 conducted 5 wing tip-to-wing tip intercomparisons, allowing comparison of two HO₂NO₂ measurements. The results are shown in Figure S1. Finally, the DC-8 payload included measurements of temperature, pressure, NO₂ photolysis rate, HO₂, and O₃ (Table 1). These measurements are used to calculate photostationary steady state (PSS) NO₂ (Eq. 1) to compare against measured NO₂ (Fig. S2). The PSS NO₂ is calculated for observations where NO_x/NO_y < 0.4 (removes emissions), solar zenith angle < 80° (removes nighttime observations), O₃/CO < 1.25 (removes stratospheric intrusion), and at all temperatures due to the lack of observations meeting these criteria in the upper troposphere. We assumed that [RO₂] \approx [HO₂]. The rate constants are from Sander et al.¹

$$\left[\mathrm{NO}_{2,PSS}\right] = \frac{k_{\mathrm{N0+0_3}}[\mathrm{O_3}][\mathrm{N0}] + 2 \cdot k_{\mathrm{N0+H0_2}}[\mathrm{H0_2}][\mathrm{N0}]}{\dot{N}\mathrm{O_2}} \tag{1}$$

The difference between the two HO_2NO_2 measurements is 35%. We scale the DC-8 observations to the average of the two measurements. For the peroxy nitrates, the difference between the speciated sum and total peroxy nitrates is 4%. There is a 10% difference between the two $HNO_{3(g+p)}$ measurements. We take the average of the two measurements as the $HNO_{3(g+p)}$.

Calculation of Alkyl and Multifunctional Nitrate

To calculate the speciated Σ ANs production, we use 15 minute averaged observations of the hydrocarbons. The hydrocarbons, OH rate constants, and α are listed in Table S4. We also include the fraction of time the peroxy radical reacts with NO versus other species (~80%) in the calculation of the speciated ΣANs production. The α also includes any contribution from secondary organic nitrate formation after radical isomerization (e.g., Lee et al.²). For hydrocarbons at or near the limit of detection (indicated in Table S4), we take the median mixing ratio observed during Leg 2 and calculate what the concentration should be in Leg 3, using the median OH concentration during Leg 2 $(2.5 \times 10^6 \text{ molecules/cm}^3)$ and the time between sampling Leg 2 and Leg 3 (~ 4000 s). Then, we use that calculated mixing ratio as the initial mixing ratio for the rest of the flight. For the hydrocarbons that do not have a temperature dependent rate constant reported (i.e., methylhexane), we use a temperature dependent rate constant that has a similar value at 298 K. Finally, for isoprene nitrate, we use the branching ratios for the different peroxy radicals from Paulot et al.,³ and we use the recommended rate constants and mechanism from Lee et al.⁴ to produce other isoprene nitrate species (i.e., isoprene dinitrate, ethanal nitrate, etc.) from the first generation isoprene nitrates.

Calculation of Alkyl and Multifunctional Nitrate in Aerosol-Phase

Here are the following definitions for the values used in Eq. 4 – 5 to calculate the partitioning into aerosol. *R* is the gas constant (8.206×10^{-5} atm m³ K⁻¹ mol⁻¹), *T* is temperature (225 K), f_{om} is the weight fraction of organic material in the total aerosol (0.8 for this experiment), MW_{om} is the molecular weight of the absorbing organic material (assumed to be 180 g/mol), ζ is the activity coefficient of the compound of interest in the condensed phase

(assumed to be 1 for this experiment), p_{vap} is the subcooled vapor pressure of interest (atm), 10⁶ (µg/g) is a conversion factor, m_{om} is the mass of the background organic aerosol (ranged from 0.015 – 0.030 µg/m³ at ambient T and P), and $m_{AN_{i,g}}$ and $m_{AN_{i,p}}$ are the masses of the speciated alkyl and multifunctional nitrates in the gas- and particle-phase, respectively. The units of K_p are m³ µg⁻¹.

Description of GEOS-Chem Model

GEOS-Chem version 09-02b⁵ (http://geos-chem.org) is used at 2×2.5 degree resolution. The standard chemistry is described by Mao et al.⁶ and includes CH₃O₂NO₂ chemistry as recommended by Browne et al.⁷ Two separate runs were conducted: one with current recommendations^{1,6} (Base Case) and one with the slower recommendations^{8,9} (Updated Chemistry Case) for the HNO₃ and HO₂NO₂ production rate constant. Both models were run from January 2011 to December 2012, and only results from January – December 2012 are analyzed to minimize memory from the initialization of the model. We use the output between 200 – 400 hPa (upper troposphere) and remove output defined as being above the meteorological tropopause.

Figure S1. Intercomparison of (a) DC-8 versus GV HO₂NO₂, (b) $\Sigma PNs_i (\Sigma PNs_i = CH_3O_2NO_2 + HO_2NO_2 + PAN + PPN)$ versus ΣPNs , and (c) IC HNO_{3(p+g)} versus CIMS HNO_{3(g)}. The slopes (±1 σ), intercepts (±1 σ), and R² values are (a) 0.66(±0.01), -3(±1), and 0.96, (b) 0.96(±0.02), 7(±9), and 0.68, and (c) 1.09(±0.02), 34(±2), and 0.81.

Figure S2. Intercomparison of photostationary steady state (PSS) NO₂ versus measured NO₂. The slope $(\pm 1\sigma)$, intercept $(\pm 1\sigma)$, and R² is 0.99(± 0.01), $-12(\pm 2)$, and 0.89.

Figure S3. The full flight path of the NASA DC-8 is shown in black for the entire 21 June 2012 experiment. Wind direction and relative speed observed on the DC-8 is shown by the red arrows.

Figure S4. Time series of (a) $CH_3O_2NO_2$, (b) HO_2NO_2 , (c) PAN, and (d) PPN. The red vertical lines indicate the start of Legs 1, 2, and 3, respectively, in Fig. 2. The $CH_3O_2NO_2$ observations are three minute averages and the values.

Figure S5. First order loss rate of (a) toluene and (b) ethyne. The solid red line is the slope $(-1.01 \times 10^{-4} \text{ and } -5.9 \times 10^{-6} \text{ s}^{-1}$ for toluene and ethyne, respectively) and the dashed-dot red line is the 2σ uncertainty ($\pm 2.3 \times 10^{-5}$ and $\pm 2.6 \times 10^{-6} \text{ s}^{-1}$ for toluene and ethyne, respectively).

Table S1. Reactions and rate constants at T = 225 K and P = 230 hPa used to calculate PAN production rate and CH₃C(O)O₂ concentrations.

Reaction	Rate Constant (cm ³ /molecules/s)
$CH_3C(O)OOH + OH \rightarrow CH_3C(O)O_2 + H_2O$	9.2×10^{-12a}
$CH_3C(O)H + OH + O_2 \rightarrow CH_3C(O)O_2 + H_2O$	2.2×10^{-11b}
$CH_3C(O)O_2 + HO_2 \rightarrow Products$	4.4×10^{-11b}
$CH_3C(O)CH_3 + hv + O_2 \rightarrow CH_3C(O)O_2 + CH_3O_2$	Measured
$CH_3C(O)CH_3 + OH \xrightarrow{80\%} CH_3C(O)O_2 + products$	1.4×10^{-13a}
$CH_2CHC(O)CH_3 + hv \rightarrow CH_3C(O)O_2 + products$	Assumed same as methyl vinyl ketone photolysis ^c
$CH_2CHC(O)CH_3 + OH \xrightarrow{60\%} CH_3C(O)O_2 + products$	$3.9 \times 10^{-11b,c,d}$
$CH_2C(CH_2)C(O)H + hv \xrightarrow{35\%} CH_3C(O)O_2 + products$	Assumed same as butanal photolysis ^{c,d}
$CH_2C(CH_2)C(O)H + hy \xrightarrow{30\%} CH_2C(O)O_2 + products$	Assumed same as butanal photolysis ^{c,d}
$CH_2C(CH_2)C(O)H + OH \xrightarrow{15\%} CH_3C(O)O_2 + products$	$4.3 \times 10^{-11b,c,d}$
$CH_3C(O)CH_2OH + hv \rightarrow CH_3C(O)O_2 + products$	Assumed same as acetone photolysis ^c
$CH_3C(O)O_2 + NO \rightarrow CH_3O_2 + CO_2 + NO_2$	2.7×10 ^{-11a}
$C_2H_5C(O)CH_3 + hv \rightarrow CH_3C(O)O_2 + products$	Measured

^{*a*}Ref 1.

^{*b*}Ref 10.

^cWe assumed that 40% of MACR+MVK measurements from the PTR-MS is MACR and 60% is MVK.

^dThe percent over the arrow includes the branching between reacting with NO, HO₂, and NO₂.

Table S2. Reactions and rate constants used to calculate PPN production rate and $C_2H_5C(O)O_2$ concentrations.

Reaction	Rate Constant (cm ³ /molecules/s)
$C_2H_5CHO + OH + O_2 \rightarrow C_2H_5C(O)O_2 + H_2O$	3.0×10^{-11a}
$C_2H_5C(O)O_2 + HO_2 \rightarrow Products$	4.4×10^{-11b}
$C_2H_5C(O)O_2 + NO \rightarrow CH_3O_2 + CO_2 + NO_2$	2.7×10^{-11b}
^{<i>a</i>} Ref 10.	

KCI IU.

^bRef 1.

Reaction	Rate Constant (cm ³ /molecules/s)		
$CH_4 + OH + O_2 \rightarrow CH_3O_2 + H_2O$	9.2×10^{-16a}		
$CH_3C(O)O_2 + NO \rightarrow CH_3O_2 + CO_2 + NO_2$	2.7×10^{-11a}		
$CH_3C(O)CH_3 + hv + O_2 \rightarrow CH_3C(O)O_2 + CH_3O_2$	Measured		
$CH_3OOH + OH \xrightarrow{70\%} CH_3O_2 + H_2O$	9.2×10^{-12a}		
$CH_3C(O)OH + hv + O_2 \rightarrow CH_3O_2 + HCO$	Measured		
$CH_3O_2 + NO \rightarrow CH_3O + NO_2$	1.1×10^{-11a}		
$CH_3O_2 + HO_2 \rightarrow Products$	1.1×10^{-11a}		
$CH_3C(O)OOH + hv \rightarrow CH_3O_2 + product$	Assumed same as methyl hydrogen peroxide		
$CH_3C(O)O_2 + HO_2 \xrightarrow{45\%} CH_3O_2 + OH + product$	4.4×10^{-11a}		

Table S3. Reactions and rate constants used to calculate $CH_3O_2NO_2$ production rate and CH_3O_2 concentrations.

^aRef 1.

Parent Compound	Rate constant	Initial Concentration	α	Classification in Fig.
	(cm ³ /molecules/s)	(pptv)		8b
Alkanes				
Methane	9.2×10^{-16d}	1.85×10^{6}	0.0014	$\Sigma ANs < C6$
Ethane	8.1×10^{-14e}	1880	0.0036	$\Sigma ANs < C6$
Propane	5.7×10^{-13e}	880	0.0189	$\Sigma ANs < C6$
i-Butane	1.6×10^{-12e}	136	0.0479	$\Sigma ANs < C6$
n-Butane	1.5×10^{-12e}	308	0.0426	$\Sigma ANs < C6$
i-Pentane	2.6×10^{-12f}	85	0.0535	$\Sigma ANs < C6$
n-Pentane	2.8×10^{-12g}	71	0.1436	$\Sigma ANs < C6$
Cyclopentane	3.6×10^{-12g}	6	0.1030	$\Sigma ANs < C6$
2-Methylpentane	4.9×10^{-12h}	10	0.1821	$\Sigma ANs \ge C6$
3-Methylpentane	4.9×10^{-12h}	9	0.1354	$\Sigma ANs \ge C6$
n-Hexane	4.9×10^{-12g}	8	0.4486	$\Sigma ANs \ge C6$
Methyl Cyclopentane ^{<i>a</i>}	6.9×10^{-12i}	9	0.1937	$\Sigma ANs \ge C6$
Cyclohexane ^a	5.3×10^{-12g}	12	0.2096	$\Sigma ANs \ge C6$
2,3-Dimethylbutane ^{<i>a</i>}	5.6×10^{-12g}	4	0.0735	$\Sigma ANs \ge C6$
n-Heptane ^a	6.7×10^{-12g}	12	0.5052	$\Sigma ANs \ge C6$
2-Methylhexane ^{<i>a</i>}	6.7×10^{-12j}	7.5	0.3933	$\Sigma ANs \ge C6$
3-Methylhexane ^{<i>a</i>}	6.7×10^{-12j}	21	0.4003	$\Sigma ANs \ge C6$
2,4-Dimethylpentane ^{<i>a</i>}	2.6×10^{-12k}	4	0.3134	$\Sigma ANs \ge C6$
2,3-Dimethylpentane ^{<i>a</i>}	2.6×10^{-12k}	6	0.3134	$\Sigma ANs \ge C6$
2,2,4-Trimethylpentane ^a	2.6×10^{-12k}	11	0.3134	$\Sigma ANs \ge C6$
Alkenes	12a			
Ethene	8.9×10 ^{-12e}	34	0.0068‴	$\Sigma ANs < C6$
Isoprene ^a	1.5×10 ^{-10e}	15	0.1135	ΣANs Isoprene
α -Pinene ^{<i>a</i>}	8.5×10 ^{-11e}	10	0.4991	ΣANs Monoterpenes
$OVOC_{\pi}$				
A actore	1.4×10^{-13d}	1400	0.0001	NANG OVOC
MVK ^b	1.4×10^{-11l}	20	0.0091 0.0184 ⁿ	$\Sigma A N_{\rm S} O V O C$
$\mathbf{M} \wedge \mathbf{C} \mathbf{D}^{b,c}$	3.3×10^{-11l}	39 26	0.0104	ZANS OVOC
MACK	4.3^10	20	0.0115	ZAINSOVOC
Aromatics				
Benzene	9.9×10 ⁻¹³¹	33	0.0063°	ΣANs Aromatic
Toluene	8.2×10^{-12l}	21	0.0052^{o}	ΣANs Aromatic
C8 Aromatics	1.6×10 ⁻¹¹	8	0.0700^{o}	ΣANs Aromatic

Table S4. Species, rate constants, average α , and classification used to calculate alkyl nitrate production (eq. 1 and Fig. 8b) at T = 225 K and P = 230 hPa.

^aMeasurements at or near limit of detection. Calculated the initial concentration using

observations from Leg 2.

^bWe assumed that 40% of MACR+MVK measurements from the PTR-MS is MACR and 60% is

MVK.

^{*c*}We assumed the reaction of MACRO₂ with NO is faster than isomerization (~0.04 s⁻¹ versus

0.005 s⁻¹); therefore, it will produce 2 multifunctional nitrates.¹¹

^dRef 1.

^eRef 10.

^{*f*}Ref 12.

^gRef 13.

^{*h*}Assumed same as n-hexane

^{*i*}Ref 14.

^{*j*}Assumed same as n-heptane

^{*k*}Assumed same as i-pentane

^{*l*}Ref 15.

^{*m*}Scaled to Ref 16.

^{*n*}Scaled to Ref 17.

^oScaled to Ref 18.

Parent Compound	Corrected Vapor Pressure	% Gas–Phase Condensing	% Contribution to
	(atm)	onto Aerosol Particle	Calculated $\Sigma ANs_{(p)}$
Alkanes			
Methane	5.2×10^{-4}	< 1	< 1
Ethane	9.7×10^{-5}	< 1	< 1
Propane	1.8×10^{-5}	< 1	< 1
i-Butane	3.3×10^{-6}	< 1	< 1
n-Butane	3.3×10^{-6}	< 1	< 1
i-Pentane 1 st Generation	6.2×10^{-7}	< 1	< 1
i-Pentane 2 nd Generation	5.1×10^{-10}	< 1	< 1
n-Pentane 1 st Generation	6.2×10^{-7}	< 1	< 1
n-Pentane 2 nd Generation	5.1×10^{-10}	< 1	< 1
Cyclopentane 1 st Generation	1.2×10^{-5}	< 1	< 1
Cyclopentane 2 nd Generation	7.0×10^{-9}	< 1	< 1
2-Methylpentane 1 st Generation	1.2×10^{-7}	< 1	< 1
2-Methylpentane 2 nd Generation	9.4×10^{-11}	4	< 1
3-Methylpentane 1 st Generation	1.2×10^{-7}	< 1	< 1
3-Methylpentane 2 nd Generation	9.4×10^{-11}	4	< 1
n-Hexane 1 st Generation	1.2×10^{-7}	< 1	< 1
n-Hexane 2 nd Generation	9.4×10^{-11}	4	3
Methyl Cyclopentane	4.0×10^{-7}	< 1	< 1
Cyclohexane 1 st Generation	2.1×10^{-6}	< 1	< 1
Cyclohexane 2 nd Generation	1.3×10^{-9}	< 1	< 1
2,3-Dimethylbutane	1.2×10^{-7}	< 1	< 1
n-Heptane 1 st Generation	2.2×10^{-8}	< 1	< 1
n-Heptane 2 nd Generation	1.8×10^{-11}	24	19
2-Methylhexane 1 st Generation	2.2×10^{-8}	< 1	< 1
2-Methylhexane 2 nd Generation	1.8×10^{-11}	24	19
3-Methylhexane 1 st Generation	2.2×10^{-8}	< 1	< 1
3-Methylhexane 2 nd Generation	1.8×10^{-11}	24	19
2,4-Dimethylpentane	2.2×10^{-8}	< 1	< 1
2,3-Dimethylpentane	2.2×10^{-8}	< 1	< 1
2,2,4-Trimethylpentane	4.0×10^{-9}	< 1	< 1
Alkenes			
Ethene	7.8×10^{-8}	< 1	< 1
Isoprene 1 st Generation	4.4×10^{-10}	< 1	< 1
Isoprene 2 nd Generation	3.7×10^{-16}	100	9
α-Pinene 2 Rings	3.9×10^{-11}	6	26
α-Pinene 1 Ring	1.8×10^{-12}	100	3
-			
<i>OVOCs</i>			
Acetone	2.2×10^{-6}	< 1	< 1
MVK	4.1×10^{-7}	< 1	< 1
MACR	4.1×10^{-7}	< 1	< 1
1			
Aromatics	2.0×10^{-8}	< 1	< 1
Denzene	2.9×10 2.7 × 10 ⁻⁹	~ 1	≤ 1
Co Anomatica	5.7×10		\ I
Co Aromatics	0./×10	< I	< I

Table S5. Species, corrected vapor pressure (atm), percent of gas–phase condensing onto the aerosol particle, and percent contribution of each species to the total calculated $\Sigma ANs_{(p)}$. The vapor pressure is calculated using SIMPOL.1¹⁹ and divided by 3.²⁰⁻²²

References

- Sander, S. P.; Abbatt, J. P. D.; Barker, J. R.; Burkholder, J. B.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Moortgat, G. K., et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation no. 17. *JPL Publication* 10-6, Jet Propulsion Laboratory, Pasadena, 2011.
- Lee, L.; Wooldridge, P. J.; Gilman, J. B.; Warneke, C.; de Gouw, J.; Cohen, R. C. Low Temperatures Enhance Organic Nitrate Formation: Evidence from Observations in the 2012 Uintah Basin Winter Ozone Study. *Atmos. Chem. Phys.* 2014, *14*, 12441-12454.
- 3. Paulot, F.; Crounse, J. D.; Kjaergaard, H. G.; Kroll, J. H.; Seinfeld, J. H.; Wennberg, P. O. Isoprene Photooxidation: New Insights into the Production of Acids and Organic Nitrates. *Atmos. Chem. Phys.* **2009**, *9*, 1479-1501.
- Lee, L.; Teng, A. P.; Wennberg, P. O.; Crounse, J. D.; Cohen, R. C. On Rates and Mechanisms of OH and O₃ Reactions with Isoprene-Derived Hydroxy Nitrates. *J. Phys. Chem. A* 2014, *118*, 1622-1637.
- Bey, I.; Jacob, D.; Yantosca, R.; Logan, J.; Field, B.; Fiore, A.; Li, Q.; Liu, H.; Mickley, L.; Schultz, M. Global Modeling of Tropospheric Chemistry with Assimilated Meteorology: Model Description and Evaluation. J. Geophys. Res.: Atmos. 2001, 106, 23073-23095.
- Mao, J.; Paulot, F.; Jacob, D. J.; Cohen, R. C.; Crounse, J. D.; Wennberg, P. O.; Keller, C. A.; Hudman, R. C.; Barkley, M. P.; Horowitz, L. W. Ozone and Organic Nitrates over the Eastern United States: Sensitivity to Isoprene Chemistry. *J. Geophys. Res.: Atmos.* 2013, *118*, 11256-11268.
- Browne, E. C.; Perring, A. E.; Wooldridge, P. J.; Apel, E.; Hall, S. R.; Huey, L. G.; Mao, J.; Spencer, K. M.; Clair, J. M. S.; Weinheimer, A. J., et al. Global and Regional Effects of the Photochemistry of CH₃O₂NO₂: Evidence from ARCTAS. *Atmos. Chem. Phys.* 2011, *11*, 4209-4219.
- Henderson, B. H.; Pinder, R. W.; Crooks, J.; Cohen, R. C.; Carlton, A. G.; Pye, H. O. T.; Vizuete, W. Combining Bayesian Methods and Aircraft Observations to Constrain the HO + NO₂ Reaction Rate. *Atmos. Chem. Phys.* 2012, *12*, 653-667.
- 9. Bacak, A.; Cooke, M. C.; Bardwell, M. W.; McGillen, M. R.; Archibald, A. T.; Huey, L. G.; Tanner, D.; Utembe, S. R.; Jenkin, M. E.; Derwent, R. G., et al. Kinetics of the HO₂ + NO₂ Reaction: On the Impact of New Gas-Phase Kinetic Data for the Formation of HO₂NO₂ on HO_x, NO_x and HO₂NO₂ Levels in the Troposphere. *Atmos. Environ.* **2011**, *45*, 6414-6422.
- Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Volume II - Gas Phase Reactions of Organic Species. *Atmos. Chem. Phys.* 2006, *6*, 3625-4055.

- Crounse, J. D.; Knap, H. C.; Ornso, K. B.; Jorgensen, S.; Paulot, F.; Kjaergaard, H. G.; Wennberg, P. O. Atmospheric Fate of Methacrolein. 1. Peroxy Radical Isomerization Following Addition of OH and O₂. J. Phys. Chem. A 2012, 116, 5756-5762.
- 12. Wilson, E.; Hamilton, W.; Kennington, H.; Evans, B.; Scott, N.; DeMore, W. Measurement and Estimation of Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes and Cycloalkanes. *J. Phys. Chem. A* **2006**, *110*, 3593-3604.
- 13. Atkinson, R. Kinetics of the Gas-Phase Reactions of OH Radicals with Alkanes and Cycloalkanes. *Atmos. Chem. Phys.* **2003**, *3*, 2233-2307.
- Sprengnether, M. M.; Demerjian, K. L.; Dransfield, T. J.; Clarke, J. S.; Anderson, J. G.; Donahue, N. M. Rate Constants of Nine C6-C9 Alkanes with OH from 230 to 379 K: Chemical Tracers for [OH]. J. Phys. Chem. A 2009, 113, 5030-5038.
- Saunders, S.; Jenkin, M.; Derwent, R.; Pilling, M. Protocol for the Development of the Master Chemical Mechanism, MCM V3 (Part A): Tropospheric Degradation of Non-Aromatic Volatile Organic Compounds. *Atmos. Chem. Phys.* 2003, *3*, 161-180.
- Teng, A. P.; Crounse, J. D.; Lee, L.; St Clair, J. M.; Cohen, R. C.; Wennberg, P. O. Hydroxy Nitrate Production in the OH-Initiated Oxidation of Alkenes. *Atmos. Chem. Phys.* 2015, 15, 4297-4316.
- 17. Praske, E.; Crounse, J. D.; Bates, K. H.; Kurten, T.; Kjaergaard, H. G.; Wennberg, P. O. Atmospheric Fate of Methyl Vinyl Ketone: Peroxy Radical Reactions with NO and HO₂. J. *Phys. Chem. A* **2015**, *119*, 4562-4572.
- Perring, A. E.; Pusede, S. E.; Cohen, R. C. An Observational Perspective on the Atmospheric Impacts of Alkyl and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol. *Chem. Rev.* 2013, 113, 5848-5870.
- 19. Pankow, J. F.; Asher, W. E. SIMPOL.1: A Simple Group Contribution Method for Predicting Vapor Pressures and Enthalpies of Vaporization of Multifunctional Organic Compounds. *Atmos. Chem. Phys.* **2008**, *8*, 2773-2796.
- 20. Fry, J. L.; Kiendler-Scharr, A.; Rollins, A. W.; Wooldridge, P. J.; Brown, S. S.; Fuchs, H.; Dubé, W. P.; Mensah, A.; dal Maso, M.; Tillmann, R., et al. Organic Nitrate and Secondary Organic Aerosol Yield from NO₃ Oxidation of Beta-Pinene Evaluated using a Gas-Phase Kinetics/Aerosol Partitioning Model. *Atmos. Chem. Phys.* **2009**, *9*, 1431-1449.
- Fry, J. L.; Kiendler-Scharr, A.; Rollins, A. W.; Brauers, T.; Brown, S. S.; Dorn, H. -.; Dubé, W. P.; Fuchs, H.; Mensah, A.; Rohrer, F., et al. SOA from Limonene: Role of NO₃ in Its Generation and Degradation. *Atmos. Chem. Phys.* 2011, *11*, 3879-3894.

22. Leungsakul, S.; Jaoui, M.; Kamens, R. M. Kinetic Mechanism for Predicting Secondary Organic Aerosol Formation from the Reaction of D-Limonene with Ozone. *Environ. Sci. Technol.* **2005**, *39*, 9583-9594.