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ABSTRACT 

IDENTIFYING EXAMINEES WHO POSSESS DISTINCT AND RELIABLE 

SUBSCORES WHEN ADDED VALUE IS LACKING FOR THE TOTAL SAMPLE  

 SEPTEMBER 2016 

JOSEPH A. RIOS, B.A., LEWIS & CLARK COLLEGE 

M.A., UNIVERSITY OF CALIFORNIA, RIVERSIDE 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. Stephen G. Sireci 

Research has demonstrated that although subdomain information may provide no 

added value beyond the total score, in some contexts such information is of utility to 

particular demographic subgroups (Sinharay & Haberman, 2014). However, it is argued 

that the utility of reporting subscores for an individual should not be based on one’s 

manifest characteristics (e.g., gender or ethnicity), but rather on individual needs for 

diagnostic information, which is driven by multidimensionality in subdomain scores. To 

improve the validity of diagnostic information, this study proposed the use of 

Mahalanobis Distance and HT indices to assess whether an individual’s data significantly 

departs from unidimensionality. Those examinees that were found to differ significantly 

were then assessed separately for subscore added value via Haberman’s (2008) 

procedure. To this end, simulation analyses were conducted to evaluate Type I error, 

power, and recovery of subscore added value classifications for various levels of 

subdomain test lengths, subdomain inter-correlations, and proportions of 

multidimensionality in the total sample. Results demonstrated that the HT index possessed 

around 100% power across all conditions, while maintaining Type I error below 5%, 
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which led to nearly perfect recovery of subscore added value classifications. In contrast, 

the power rates for Mahalanobis Distance were much lower ranging from 13% to 61% 

with Type I errors maintained at the nominal level of 5%. Although the power rates were 

below the desired criterion of 80%, the cases identified as aberrant using this method 

were found to have greater variability between subdomain scores, increased reliability, 

and lower observed subdomain correlations when compared to the generated data. As a 

result, outlier cases were found to have subscore added value for nearly 100% of cases 

across conditions even when the generated multidimensional data did not possess 

subscore added value. These results were cross-validated using a large-scale high-stakes 

test in which the Mahalanobis Distance measure was found to identify 6.57% of 8,803 

test-takers that possessed subscores with added-value who otherwise would have been 

masked by the unidimensionality of the total sample. Overall, this study suggests that the 

Mahalanobis Distance measure shows some promise in identifying examinees with 

multidimensional score profiles.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In recent years, educational assessments have increasingly assumed a central role 

in educational reform by serving as a measure of school accountability and teacher 

evaluation (Heubert & Hauser, 1998). However, it is argued that at their most basic level, 

educational assessments serve as a mechanism to identify student learning needs and 

instructional improvements. To accomplish these latter endeavors, increased research has 

focused on making data accessible and easy to understand, providing evidence to support 

feedback credibility, and leveraging technology (e.g., automated scoring) to improve the 

timeliness of assessment results (Coe, 1998; Hambleton & Zenisky, 2013; Marsh, Pane, 

& Hamilton, 2006; Smither, London, & Reilly, 2005; Yattali & Powers, 2010). In spite of 

this, one question looms large, what kind of feedback should be provided?  

In general, there are three types of assessment feedback, which are summative, 

normative, and diagnostic in nature (Hambleton & Zenisky, 2013). Summative and 

normative information respectively communicate to the examinee and/or stakeholders 

how the examinee performed and how that performance is related relative to other 

examinees. In contrast, diagnostic information informs the examinee and/or stakeholders 

with information that is more detailed than that reported at the general subject area level 

(i.e., summative and normative information) for the purpose of informing preparation for 

future test administrations (Goodman & Hambleton, 2004). More specifically, diagnostic 

score reporting most often disseminates information related to sub-domains, which refer 

to a meaningful cluster of items that are based on content categories. For example, a math 
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test may include sub-domains on algebra, geometry, measurement, etc. The scores 

assigned to these subsections are generally referred to as subscores, which have become 

of increasing interest as the U.S. Government’s No Child Left Behind Act of 2001 has 

demanded that students receive diagnostic reports (Sinharay, Puhan, & Haberman, 2011). 

One major reason for the increased interest in subscore feedback is that it has 

been perceived as a component for effective teaching as it allows teachers to understand 

student learning challenges at a fine-grained level (Firestone, 2014; Kunnan & Jang, 

2009). Elawar and Corno (1985) supported this claim by demonstrating improved student 

performance when providing feedback on homework that considered the following 

questions: “What is the key error? What is the probable reason the student made this 

error? How can I guide the student to avoid the error in the future? and What did the 

student do well that could be noted? ” (p. 166). By placing focus on these types of 

questions when providing feedback, one can better diagnose a problem and assist in 

improving instruction. As an example, research has demonstrated more effective 

instructional targeting for low-achieving students when providing diagnostic feedback 

from curriculum-based measurement (CBM; Capizzi & Fuchs, 2005). One explanation 

for this finding is that feedback can enhance instructional competence by helping teachers 

recognize their accomplishments and deficiencies (Firestone, 2014). Although research 

has shown that diagnostic feedback has been successful on classroom-level assessments 

(i.e., homework and CBM) of student progress (Capizzi & Fuchs, 2005; Elewar & Corno, 

1985), the next section reviews research that has investigated how diagnostic score 

reporting has impacted both instruction and test performance from large-scale educational 

assessments. 
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1.2 Impact of Diagnostic Score Reporting on Instruction and Test Performance 

Research on feedback interventions date back over 100 years; however, 

surprisingly a dearth of literature exists for evaluating the impact of diagnostic feedback 

on instruction and test performance from large-scale assessments. More specifically, 

there is a lack of quantitative research that has investigated if teachers or instructors use 

test score feedback, how such information is implemented to improve instruction, and 

whether such feedback improves student performance. This is troubling as the revenue in 

data management and data analysis services for K-12 testing has grown exponentially to 

increase by $46.2 million over a three-year period (Stein, 2003). The paragraphs that 

follow will describe the existing literature that has examined teacher usage of diagnostic 

information and its impact on improving student performance.  

One of the few studies that has evaluated the use of test score feedback by 

teachers was conducted by Tyler (2013). In this study, teacher usage was investigated for 

a web-based tool implemented by the Cincinnati Public Schools to assist in the 

presentation and analysis of diagnostic student test scores. Within this web-based tool, 

teachers were able to access benchmark assessments, end-of-year state-level assessments 

(historical trends were available at the student-level), and for a proportion of struggling 

schools, pre-test and post-test data were given in September and January, respectively. 

These data were made available for whole classrooms, groups of students within a 

classroom, individual students, and at the item-level of the assessment. Furthermore, 

teachers were also provided resource information (e.g., lesson plans) to address the needs 

of struggling students based on diagnostic test score feedback. Usage of the web-based 
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tool was analyzed for 429 teachers in grades 3-8 who taught math, language arts, social 

studies, science, or a self-contained elementary classroom.  

Results demonstrated that the median number of logins for teachers was 28 with 

median time spent viewing data online being equal to 3.5 hours through the 2008-2009 

school year. However, teachers were also able to visit the web-based tool for the purpose 

of printing student test data. The author found that teachers on average printed group-

level and individual-level test results once every three weeks and once every six weeks, 

respectively. On any given week only 10 to 40 percent of teachers utilized the web-based 

tool. For those teachers who did login, 20 to 50 percent of their time was dedicated to 

looking at student test performance data1. Teachers in grades 3-6 were found to spend 38 

percent less time viewing the web-based tool than their counterparts in grades 7-8. Usage 

was also evaluated in terms of when information was accessed. Results showed that on 

average teachers spent 50 percent more time viewing test results per week following a 

two week period after a benchmark test was administered than any other time. 

Interestingly, the author found that teachers spent less time during and after the state 

exams when compared to the benchmark test or any other time during the academic 

school year.  

To better contextualize the results of the analysis, Tyler (2013) conducted 

qualitative interviews of 6 to 8 teachers from four different Cincinnati elementary 

schools. From these discussions, the one major contributing factor related to the lack of 

diagnostic feedback usage was time. For one, teachers felt that they lacked instructional 

time to address the student feedback provided by the assessments. Secondly, teachers 

                                                           
1 The web-based tool also provided teachers with disciplinary, attendance, and grade records for individual 

students. 
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generally felt they did not have enough time to access and process the data provided. The 

last concern may point toward the need for school administrators to communicate how 

teachers should allocate time to viewing and incorporating test score feedback into 

instructional practices. As noted by Tyler, if the school district expects teachers to access 

the information in their off-time, regardless of available data analysis tools or district 

support, usage would not be expected to be high. Overall, results of this study are 

troubling as there is evidence that when data systems that provide diagnostic information 

are made available on a voluntary basis, teachers make very little use of them. 

In contrast to Tyler (2013), Muralidharan and Sundararaman (2010) conducted an 

experimental study to evaluate the impact of diagnostic tests and feedback on teacher 

classroom behavior and student test performance in 300 randomly selected primary 

schools in India. Within this study, three experimental conditions each comprised of 100 

schools were included: (a) no feedback, (b) feedback, and (c) feedback with monetary 

incentives. Across all three conditions, a diagnostic test of mathematics and language 

were administered at the beginning of the academic year. For the feedback schools a 

detailed written diagnostic score report on student performance (both absolute and 

relative) were provided for teachers with a personal visit from educational experts on 

how to read and use the performance reports and benchmarks. These schools were also 

made aware that end-of-year student progress would be monitored with a follow-up 

diagnostic test. In addition to student performance, classroom observers visited feedback 

schools once a month for 20-30 minutes to observe and evaluate teaching processes. 

Results of the classroom observations demonstrated that when compared to the no 

feedback condition, teachers in feedback schools more often: taught actively, addressed 
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questions to students, encouraged participation, read from textbooks, made children read 

from textbooks, actively used the blackboard, assigned homework, provided homework 

guidance, provided feedback on homework, made students use a textbook, and students 

more often asked questions in class. Interestingly, the intervention groups did not differ 

in terms of teacher absence, orderly classrooms, administering tests, calling students by 

name, providing individual and group help, and controlling the classroom. When 

comparing feedback schools (incentives versus no incentives), no statistically significant 

differences across variables related to teaching processes were observed.  

In terms of student performance, the feedback alone group did not have 

significantly higher scores for mathematics, language, or combined domains when 

compared to the no feedback group. This finding suggests that teachers within the 

feedback alone condition were able to model desired behaviors when observers were 

present in the classroom, but were not able to improve student performance beyond that 

achieved by the control group. Interestingly, when investigating student performance 

differences between feedback conditions (incentives versus no incentives), the incentive 

group was found to have significantly higher mean scores. This suggests that when 

performance-linked incentives were provided, teachers were able to more effectively 

utilize the diagnostic feedback for instructional purposes, due possibly to increased 

motivation to use such feedback. This assumption was supported by teachers in the 

incentives group reporting more often that feedback was useful, which was significantly 

correlated with student performance. Such a result implies that it is not enough to merely 

provide diagnostic feedback, but instead one must create an environment in which there 

is a demand by teachers for data-based decision making. 
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Although quantitative research related to data usage and more specifically 

diagnostic feedback are currently lacking for large-scale educational assessments, the few 

published studies in this area highlight a number of important points. For one, teachers 

are not necessarily intrinsically motivated to use diagnostic information, particularly 

when time allocation for interpreting and implementing such information is perceived to 

be limited. Secondly, diagnostic information may improve student performance when 

teachers are provided with training on how to use it and are given incentives for doing so. 

As a result, it appears that under the right conditions providing diagnostic information 

may be a worthwhile endeavor for measurement specialists; however, to ensure that 

instructional decisions related to detailed performance-level information are accurate, a 

number of psychometric concerns must be first addressed. 

1.3 Statement of Problem 

A matter of concern related to subscore reporting is the precision of inferences 

that can be made about strand-level performance, particularly as subdomains are often 

comprised of a small number of items or are retrofitted from previously developed 

unidimensional assessments. Although many stakeholders demand that subscores are 

reported (Brennan, 2012), the professional measurement community has warned against 

reporting subscores that are not of adequate psychometric quality for two reasons: 1) lack 

of validity evidence based on internal structure (construct validity) and 2) inadequate 

reliability (i.e., an inconsistency in test scores across parallel forms due largely to random 

measurement error). The former concern is directly addressed in Standard 1.13 of the 

Standards for Educational and Psychological Testing [American Educational Research 

Association (AERA), American Psychological Association (APA), & National Council 
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on Measurement in Education (NCME), 2014], which states that “When a test provides 

more than one score, the interrelationships of those scores should be shown to be 

consistent with the construct(s) being assessed” (p. 27). One major reason for a lack of 

subdomain distinctiveness is that testing programs are often retrofitting subscores from 

essentially unidimensional assessments that were not designed specifically to provide 

information at the subdomain-level. Attempting to report multidimensional score profiles 

from unidimensional tests, regardless of the psychometric model, applied will lead to a 

lack of subdomain distinctiveness (Luecht, Gierl, Tan & Huff, 2006). Therefore, if 

distinctiveness is lacking, decisions based on subdomain performance would be 

inaccurate. 

The second concern of inadequate reliability is addressed in Standard 1.14, which 

maintains that “When a test provides more than one score...[the] reliability of the 

subscores should be demonstrated” (AERA, APA, & NCME, 2014, p. 27). Adequate 

subscore reliability is required to minimize errors in judgment when subdomain 

information influences decisions (Stone, Ye, Zhu, & Lane, 2010). As an example, some 

state educational testing systems utilize subscore performance to identify student learning 

needs and to plan educational interventions to meet these needs. However, if the 

subdomain information is not of adequate reliability such decisions can be based largely 

on measurement error, which from a practical context can lead to wasted resources in 

providing educational interventions that are not accurately directed toward an individual 

student’s learning needs.  

To address the need for adequate reliability with subdomains that are often 

measured based on a small number of items, researchers have proposed using collateral 
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information (e.g., total score or performance on other subdomains) to improve subscore 

reliability (e.g., Wainer et al., 2001). Although these procedures have been shown to 

improve reliability, they do so at the cost of losing subdomain distinctiveness (Skorupski 

& Carvajal, 2010). As a result, there is still a need to find ways of reporting subscores 

that contribute unique diagnostic information and are statistically reliable.    

1.4 Purpose of Study 

 Recent research has demonstrated that although subdomain information may 

provide no added value (i.e., distinct and reliable information of subdomain performance) 

beyond the total score, in some contexts such information is of utility to particular 

demographic subgroups (Sinharay & Haberman, 2014). Such a result suggests that when 

analyzing subscore added value for the total sample, subgroup differences are often 

masked. In most cases, this leads one to conclude that there is no subscore added value, 

which may lead to withholding diagnostic information as it is perceived to lack validity 

and adequate reliability for all examinees. However, in actuality, this information may be 

of particular use to identifying student learning-needs for a subgroup of examinees.  

One limitation of previous research on evaluating comparability of subscore 

added value is that it has been evaluated for identifiable and protected demographic 

subgroups. However, it is argued that the utility of reporting subscores for an individual 

should not be based on one’s manifest characteristics (e.g., gender or ethnicity), but 

rather on individual needs for diagnostic information, which is largely driven by a degree 

of multidimensionality in subdomain score profiles. However, when grouping examinees 

by manifest variables such individual multidimensionality can be masked if the majority 

of group members possess unidimensional data. As a result, individuals that would 
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benefit from diagnostic feedback would not be provided with such information due to 

their demographic membership.  

To improve the validity of diagnostic information, this study proposes the use of 

multivariate outlier detection and non-parametric person-fit procedures to assess whether 

individual score profiles significantly depart from unidimensionality. Those examinees 

that are found to differ significantly can then be assessed separately for subscore added 

value. This approach has two major advantages over previous approaches. For one, it 

may serve as a way of reporting subscores that contribute unique diagnostic information 

and are statistically reliable. Secondly, it may avoid the perception that reporting 

differential subscore information for subgroups is discriminatory as within this approach 

groups are based on test performance as opposed to demographic membership. The 

importance of this study is clear in the wake of increased demand from stakeholders and 

the NCLB legislation for diagnostic information that accurately and reliably identifies 

student learning-needs.  

Thus, the purpose of this study is three-fold and intends to answer, (1) How 

multidimensional do data need to be for subscores to have added value (i.e., be a better 

predictor of the true subscore than the observed total score)?; 2) How accurate are 

multivariate outlier detection and non-parametric person-fit statistics in identifying 

aberrant score profiles or response patterns due to multidimensionality?; and 3) When 

separating examinees into groups based on whether their score profiles or response 

patterns differ significantly from the total sample, does subscore added value invariance 

hold? The first question will address whether there are individuals that could benefit from 

diagnostic information as they possess multidimensional subscore domains, but are 
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masked by the largely unidimensional inter-subdomain correlations of the total sample. 

By demonstrating that there is an issue of masking effects when assessing subscore added 

value for some examinees, there will be justification for assessing aberrant score profiles 

or patterns due to multidimensionality, which is the focus of the second research 

question. The last question gets at a more general and important issue, which is when 

considering subgroups of examinees based on their score profiles or response patterns, do 

we obtain a different perception of subscore quality than when only considering the total 

sample?  

These questions will be analyzed via simulation analyses, while the general 

approach of evaluating score profiles and response patterns will be applied to a large-

scale applied dataset to evaluate its utility in practice. Results from this study are 

intended to: (a) further inform our understanding of subscore added value invariance 

when reporting raw subdomain scores and (b) provide an approach for reporting valid 

and reliable diagnostic information for those examinees who are of greatest need based 

on subscore profiles or response patterns rather than identifiable subgroup membership.  
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1 Overview of Literature Review 

 This chapter reviews the literature on subscore estimation procedures, how 

subscores are reported in practice, and validation approaches of subscore reporting. More 

specifically, this chapter can be outlined into the following five sections: 

1. Subscore Estimation Methodologies. This section provides a review of existing 

methodologies that have been applied to subscore ability estimation. 

Methodologies will be divided by “simple” and augmented approaches. Within 

each approach, estimation procedures will be divided by classical test theory 

(CTT) and item response theory (IRT) frameworks.  

2. Comparative Analyses of Subscore Estimation Methodologies. This section 

provides a review of studies that have evaluated the technical adequacy of 

subscore estimation methodologies by conducting comparative investigations.  

Within this section, comparative studies were divided based on the item type 

evaluated: a) dichotomous and b) ordinal. 

3. Subscore Reporting Practices. This section summarizes reviews of how subscores 

are reported in practice by studying the literature related to score reports. 

Although this line of research is not focused primarily on the validity of subscore 

reporting, it provided useful guidance on the subscore estimation procedures that 

practitioners often employ.  

4. Validation of Operational Subscore Reporting. This section reviews both 

methodologies for assessing the added value of reporting raw subdomain scores 
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and studies that have applied these methods to evaluating the validity of reporting 

raw subdomain scores as diagnostic information. As the focus of this paper is 

primarily on the use of fine-grained information to improve student learning, only 

studies assessing the validity of reporting individual-level subscores will be 

reviewed. Furthermore, as the comparability of scores across subgroups is 

important according to the Standards (AERA, APA, & NCME, 2014), studies 

that have evaluated subscore added value invariance will also be reviewed. 

5. Summary Based on Literature Review. This section will summarize the findings 

from the four previous sections to provide justification for the need to conduct the 

current study.  

2.2 Review of Subscore Estimation Methodologies 

There are currently two general approaches to reporting subscores: 1) “simple” 

and 2) augmented procedures. The former approach estimates subscore ability by either 

calculating raw or percent-correct scores or by applying unidimensional item response 

theory (UIRT) estimation. For simple scores within the CTT framework, the added value 

of reporting subscores over total scores is assessed using two general methods: 1) 

Haberman’s (2008) method and 2) Brennan’s (2012) Utility Index. The simple IRT 

procedures include: 1) application of a unidimensional IRT model to items within each 

subtest separately, and 2) subscores based on a unidimensional model for each subtest, 

but with item parameter estimates based on the total number of items on the test. In 

contrast, augmentation approaches use collateral information (i.e., the total score or 

scores from other subdomains) to improve the stability of subscore estimation, which can 

be done using either CTT or IRT. The CTT procedures include: regressed estimates based 
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on univariate regression (Kelley, 1947) and Wainer et al.’s (2001) subscore 

augmentation. The remaining four procedures are generally based within the IRT 

framework: 1) Wainer et al.’s (2001) subscore augmentation applying IRT theta 

estimates, 2) Yen’s (1987) Objective Performance Index , 3) the Out-of-Scale 

Information method (Kahraman & Kamata, 2004), and 4) subscores based on 

multidimensional IRT (de la Torre & Patz, 2005). However, one must note that any of the 

IRT methodologies could be further broken down into how subscores are reported (e.g., 

thetas, scale scores, IRT true scores, or percent-correct IRT true scores), as well as 

estimation methods and observed data types for theta estimates (Item Pattern: ML, MAP, 

and EAP; Summed Raw Score: ML, MAP, EAP, and raw to IRT scale score conversion).  

2.2.1 Simple Subscore Estimation Methods 

2.2.1.1 Number-Correct or Percent-Correct Raw Subscores 

 Of all the subscore estimation procedures, the number-correct or percent-correct 

raw subscores are the easiest to implement. This method sums the total number of correct 

responses on the subdomain of interest and either reports this raw score or calculates the 

total percent correct. This method is advantageous in that it can be computed quickly and 

it does not require advanced psychometric training to implement, which makes it 

intuitively comprehendible by non-technical audiences (e.g., school personnel and 

parents). However, as noted by Md Desa (2012), summed-scores have been judged to be 

unattractive for stakeholders when scores are subjected to public scrutiny in large-scale 

testing. Furthermore, one of the major disadvantages of this approach is that subscores do 

not necessarily accurately reflect actual strengths and weaknesses as examinees with the 

same raw scores are perceived as being of equal ability regardless of which items were 
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answered correctly; however, this is not a shortcoming of the methodology specifically, 

but is rather a characteristic of the CTT framework (Hambleton & Jones, 1993). An 

additional disadvantage of this approach is that subscore reliability is not considered or 

augmented as the other CTT methods later described in this section, which is particularly 

troubling as the reliability of subscores is one of the major difficulties to valid subscore 

reporting.  

2.2.1.2 Simple Unidimensional IRT Subscore Estimation Procedures 

 One approach that is common in large-scale assessments is to estimate subscores 

by assuming an independent unidimensional space for each subtest (Buluth, 2013). More 

specifically, items within a subdomain are calibrated separately to obtain theta estimates 

for that subdomain separately. In practice, this would require n+1 calibrations, where n is 

equal to the number of subdomains and the additional calibration would be that of the 

overall score where all items would be included. Another approach is a two-stage process 

for obtaining subdomain ability estimates. Within this approach, a unidimensional IRT 

model is first applied to all items within a test. Next, subdomain ability estimates are 

obtained via fixed item parameter estimation based only on those items that belong to the 

targeted subdomain. For an applied example of this approach, the reader is referred to 

Bock, Thissen, and Zimowski (1997). 

2.2.2 Subscore Augmentation Estimation Methodologies 

2.2.2.1 Kelley’s (1947) Univariate Regression  

 Kelley’s regressed-score estimates (RSEs) are based on the linear regression of 

true score (T) on observed score (X), which results in the following equation: 

𝑇̃ = 𝜌𝑋
2𝑋 + (1 − 𝜌𝑋

2)𝑇̅,                                                (1) 
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where 𝑇̃ is the estimated true-score random variable based on the linear regression, 𝜌𝑋
2  is 

the reliability of the observed score, and 𝑇̅ is the mean true score. Under CTT 

assumptions, 𝑇̅ = 𝑋̅, which allows for equation 1 to be expressed as: 

𝑇̃ = 𝜌𝑋
2𝑋 + (1 − 𝜌𝑋

2)𝑋̅,                                                  (2) 

where 𝑋̅ is the observed score mean. As noted by Tao (2009), equation 2 has an empirical 

Bayesian interpretation as the essence of this approach is to remove the unreliable part of 

the observed score by regressing it to the mean. Specifically, as the reliability of the 

observed score increases, 𝑇̃ is more influenced by 𝑋. However, as the reliability of the 

observed score decreases, 𝑇̃ is increasingly influenced by 𝑋̅. As an extreme, if 𝜌𝑋
2  is equal 

to 0, 𝑇̃ is equal to 𝑋̅; however, if 𝜌𝑋
2  is equal to 1, 𝑇̃ is equal to 𝑋, which would mean that 

every examinee’s RSE is equal to his/her observed score. As a result, Kelley’s method 

utilizes the observed score mean as collateral information to account for unreliable 

subscores.     

2.2.2.2 Wainer et al.’s (2001) Subscore Augmentation  

Wainer et al. (2001) extended Kelley’s (1947) method by using regressed-score 

estimates that are based not on the observed score mean, but rather are based on 

information from other subscores in a multivariate context. Equation 2 can be 

algebraically rearranged to the following equation: 

𝑇̃ = 𝑋̅ + 𝜌𝑋
2(𝑋 − 𝑋̅)                                                 (3) 

and can be represented in a multivariate context as: 

𝑇̃ = 𝑿. +𝚩(𝑿 − 𝑿. ),                                                (4) 
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where 𝑿. is a vector of subdomain means, 𝑿 is a vector of subdomain scores, and 𝚩 is a 

matrix that is the multivariate analog for the estimated reliability and is estimated as 

follows:  

𝚩 = ΣTΣX
−1,                                                        (5) 

where ΣT is the true score covariance matrix and ΣX
−1 is the inverse of the observed score 

variance and can be obtained directly from the sample. This solution is based on the CTT 

definition of reliability as the proportion of true score variance relative to the observed 

score variance. Under the CTT assumption, true scores are uncorrelated with error, which 

means that the off-diagonal elements within both ΣT and ΣX will be equal. Therefore, to 

obtain the diagonal elements of ΣT, one must obtain the diagonal elements of ΣX  by the 

reliability (coefficient 𝛼) of the subdomain of interest. Therefore, the empirical Bayes 

estimate of the vector of true subscores, 𝜏𝑝, for examinee p, conditioned on observed 

scores, is: 

𝐸(𝜏𝑝|𝑥𝑝) = 𝜇 + ΣTΣX
−1(𝑥𝑝 − 𝜇),                                     (6) 

which is estimated in practice as: 

𝑇̃ = 𝑿. +ΣTΣX
−1(𝑿 − 𝑿. ) = 𝑿. +𝚩(𝑿 − 𝑿. )                           (7) 

An estimate of the conditional covariance matrix of the estimated true score can also be 

obtained to compute the conditional standard errors for augmented subscores (See 

Wainer et al., 2001). 

 As noted by Tao (2009), Wainer et al.’s (2001) and Kelley’s (1947) methods are 

identical when the off-diagonal elements of 𝚩 are equal to zero, which would indicate 

that the subscores are independent. As a result, when the subscores are perfectly reliable, 

the estimated true score for an examinee is equal to his/her observed score, while all 
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observed scores are regressed to the mean when reliability is equal to zero. The 

differences between the two methods are apparent when the off-diagonal elements are not 

equal to zero. When this is the case, Wainer et al.’s method allows for borrowing 

information from other subscores to augment the reliability of the subscore of interest.  

2.2.2.3 Wainer et al.’s (2001) Augmentation Method with IRT Theta Estimates 

 As noted by Wainer et al. (2001), testing programs may prefer reporting IRT scale 

scores as opposed to number or percent-correct scores, which requires the need to 

develop augmentation procedures that can generalize the empirical Bayes approach for 

application with IRT scale scores. To do this, the authors adapted the CTT approach 

described in section 2.2.2.2. Specifically, this procedure requires unidimensional IRT 

ability estimates obtained using maximum likelihood (MLE), maximum a posteriori 

(MAP), or expected a posteriori (EAP) methods. If MAP or EAP estimates are applied, 

there is first a need to correct these ability estimates due to their tendency to shrink to the 

population mean (Fu & Qu, 2012). Assuming that the population mean is 0 and the 

standard errors are constant, the correction2 is made as follows:  

MAP∗(θs) =
MAP(θs)

𝜌𝑠
,                                                   (8) 

where MAP∗[θ𝑠] is the corrected IRT scale estimate on subscale s, MAP(θs) is the 

original estimate obtained from the unidimensional calibrations, and 𝜌𝑠 is an estimate of 

the reliability of subscale s, which is calculated as: 

𝜌𝑠 =
𝜎2MAP(θs)

𝜎2MAP(θs)+σ̅e
2,                                                     (9) 

                                                           
2 This correction can be applied to either MAP or EAP theta estimates. For simplicity’s sake, only the MAP 

correction is illustrated.  
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where 𝜎2MAP(θs) is the variance of the IRT scale scores for subscale s and σ̅e
2 is the 

average value of the variances of the error of measurement associated with those scores. 

These corrected theta estimates are then applied to equation 4 and augmentation is 

conducted in the same way as with observed scores. It should be noted that if MLE is 

used to obtain ability estimates, there is no need to apply the correction procedure 

described in this section (Fu & Qu, 2012).      

2.2.2.4 Objective Performance Index 

 To improve the stability in reporting subscores, Yen (1987) proposed the 

Objective Performance Index (OPI), which is a procedure that combines subdomain 

performance with information from the examinee’s overall test performance to provide 

stability in reporting subscores. More specifically, it implements a Bayesian IRT 

estimation to obtain an estimated true score (estimated proportion-correct) for items on a 

subdomain given their overall test performance. This is accomplished in five steps. First, 

item parameters are estimated for the entire test using an IRT model, such as the three-

parameter logistic (3PL) model: 

𝑃𝑖(𝜃𝑗) = 𝑐𝑖 + (1 − 𝑐𝑖)
exp[1.7𝑎𝑖(𝜃𝑗−𝑏𝑖)]

1+exp[1.7𝑎i(𝜃𝑗−𝑏𝑖)]
,                                (10) 

where 𝑃𝑖(𝜃𝑗) is the probability of correctly answering item i given examinee j’s ability, 

𝑎𝑖 is the discrimination parameter, 𝑏𝑖 is the difficulty parameter, and 𝑐𝑖 is the pseudo-

guessing parameter. Secondly, ability estimates (θ̂) are obtained for each examinee by 

treating the item parameter estimates (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) as fixed. Upon obtaining item and ability 

estimates, a true score for each examinee is estimated for performance on the targeted 

subdomain by plugging parameter estimates into equation 10 for those items within the 

targeted subdomain: 
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𝑇̂𝑗 =
1

𝑛𝑗
∑ 𝑃𝑖𝑗(𝜃)

𝑛𝑗

𝑖=1
,                                                (11) 

where 𝑇̂𝑗 is the true score (expected proportion correct) for subdomain j, 𝑛𝑗  is the number 

of items in subdomain j, and 𝑃𝑖𝑗(𝜃)is the probability of correctly responding to item i in 

subdomain j. The fourth step is to determine whether the estimated true score for an 

examinee is consistent to what would be expected. That is, one issue with computing an 

expected proportion correct is that for some examinees a subdomain may be 

multidimensional. For example, an examinee may be familiar with international history, 

but may have little knowledge of domestic history due to their immigrant status. 

Therefore, the author developed the following statistic to evaluate unexpected subdomain 

performance given the examinee’s observed percent-correct subscore:  

𝑄 = ∑
𝑛𝑗(

𝑥𝑗

𝑛𝑗
−𝑇𝑗)2

𝑇̂𝑗(1−𝑇̂𝑗)

𝐽
𝑗=1 ,                                                  (12) 

where J is the total number of subdomains. The Q statistic is then compared to the critical 

value from a chi-square distribution with J degrees of freedom at an alpha-level of .10. 

The last step of the analysis is to compute OPI; however, the Q statistic impacts how the 

OPI is calculated. For example, if Q ≤ 𝜒2(J, 0.10), the OPI (𝑇̃𝑗) is defined as a weighted 

average of the observed subscore and the estimated subscore: 

𝑇̃𝑗 =
𝑇̂𝑗𝑛𝑗

∗+𝑥𝑗

𝑛𝑗
∗+𝑛𝑗

,                                                        (13) 

where  

𝑛𝑗
∗ =

𝜇(𝑇̂𝑗|𝜃)[1−𝜇(𝑇̂𝑗|𝜃)]

𝜎2(𝑇̂𝑗|𝜃)
,                                                (14) 

𝜇(𝑇̂𝑗|𝜃) ≈
1

𝑛𝑗
∑ 𝑃𝑖𝑗(𝜃)

𝑛𝑗

𝑖=1
,                                             (15) 
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𝜎2(𝑇̂𝑗|𝜃) ≈
[

1

𝑛𝑗
∑ 𝑃𝑖𝑗

′ (𝜃)
𝑛𝑗
𝑖=1

]

2

𝐼(𝜃,𝜃̂)
,                                             (16) 

where  

𝑃𝑖𝑗
′ (𝜃) =

1.7𝑎𝑖𝑗[1−𝑃𝑖𝑗(𝜃)][𝑃𝑖𝑗(𝜃)−𝑐𝑖𝑗]

1−𝑐𝑖𝑗
,                                      (18) 

and if theta is estimated using the maximum likelihood estimation procedure based on the 

examinee’s number correct score,  

𝐼(𝜃, 𝜃) =
[∑ ∑ 𝑃𝑖𝑗

′ (𝜃)
𝑛𝑗
𝑖=1

𝐽
𝑗=1 ]

2

∑ ∑ [𝑃𝑖𝑗(𝜃)[1−𝑃𝑖𝑗(𝜃)]
𝑛𝑗
𝑖=1

𝐽
𝑗=1

.                                      (19) 

If there are items that do not contribute to any subdomain but do participate in the 

estimation of ability, the information contributed would be added to equation 19. If Q > 

𝜒2(J, 0.10), the OPI (𝑇̃𝑗) disregards prior information and is defined as the observed 

percent-correct subscore: 

𝑇̃𝑗 =
𝑥𝑗

𝑛𝑗
.                                                            (20)  

2.2.2.5 Out-of-Scale Information Method 

 Building upon the work of Davey and Hirsh (1991) and Ackerman and Davey 

(1991), Kahraman and Kamata (2004) proposed the Out-of-Scale method. Within this 

procedure, subscore ability estimation is augmented by using collateral information from 

other subdomains. More specifically, this procedure can be conceptualized in three major 

steps. First, item parameters for items of the subdomain of interest (“in-scale” items) are 

first calibrated using for example, the 3PL IRT model. Secondly, each item outside of the 

targeted subdomain (“out-of-scale” items) are calibrated using maximum likelihood 

estimation by holding constant the in-scale item parameters for each targeted subdomain. 

Holding constant the in-scale item parameters is meant to ensure that the individual out-
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of-scale items are calibrated with respect to the domain trait that is defined in the in-scale 

items. This estimation procedure can be expressed as follows: 

𝐿(𝐔|𝛉, 𝑎𝑛+1, 𝑏𝑛+1, 𝑐𝑛+1) = ∏ ∏ 𝑃𝑖(𝜃𝑗)
𝑢𝑖𝑗

𝑛

𝑖=1

𝑠

𝑗=1

[1 − 𝑃𝑖(𝜃𝑗)]
1−𝑢𝑖𝑗

 

× 𝑃𝑛+1(𝜃𝑗)
𝑢(𝑛+1)𝑗[1 − 𝑃𝑖(𝜃𝑗)]1−𝑢(𝑛+1)𝑗 ,                                   (21) 

where 𝐔 is the response matrix with all in-scale items and one out-of-scale item, 𝛉 is the 

ability parameter vector for all examinees, 𝑢𝑖𝑗 is the item response for item i, person j, 𝑃𝑖 

is the item response function for item i given the known parameters from the in-scale 

items obtained from the 3PL model, 𝑃𝑛+1 is the item response function for item n + 1 

(i.e., the one out-of-scale item being calibrated) with unknown item parameters 

(𝑎𝑛+1, 𝑏𝑛+1, 𝑐𝑛+1) using the 3PL model. The last step is to estimate examinee ability on 

the targeted subdomain by using the expected a posteriori (EAP) estimator for item 

responses on both the in-scale and out-of-scale items.   

2.2.2.6 Multidimensional IRT Applications to Subscore Estimation 

 The IRT subscore estimation procedures that have been described up to this point 

are based on unidimensional modeling of the data. However, as noted by Buluth (2013), 

these methodologies are limited in a number of ways. For one, a simple structure (i.e., 

each item is only an indicator for one subdomain) is assumed and secondly, the 

covariance among the subdomains is ignored. The impact of the latter limitation on 

unidimensional theta estimation when the underlying structure of the data is 

multidimensional was examined by Tate (2004) who found that the standard errors of the 

unidimensional ability estimates increased as the number of dimensions increased and the 

covariances among the latent dimensions decreased. To account for possible biasing in 
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subscore estimation when applying unidimensional procedures to data that are 

multidimensional in nature (i.e., reporting subdomains automatically assumes a 

multidimensional data representation), researchers have suggested the application of 

multidimensional IRT (MIRT) models.  

 MIRT models differ from unidimensional IRT (UIRT) models in multiple ways. 

For one, MIRT models extend UIRT models by modeling two or more latent dimensions 

simultaneously. Furthermore, MIRT models can estimate both simple and complex test 

structures (i.e., an item can be an indicator of more than one latent dimension). In terms 

of complex test structures, the probability of correctly responding to an item is based on a 

vector of ability as opposed to a single ability. Complex MIRT models can either be 

compensatory or non-compensatory.  

2.2.2.6.1 Compensatory MIRT Models 

Compensatory models allow for a high ability on one dimension to offset or 

compensate for a low ability on another dimension. For example, in a math word 

problem, if the examinee possessed low reading ability, but high math ability, the 

probability of a correct response would be moderate. Allowing one dimension to offset 

another dimension is clearly reflected in the summation of the logit in the 

multidimensional two-parameter logistic model (M2PLM): 

𝑃(𝑥𝑖 = 1) =
𝑒∑ 𝒂ik(𝜽𝑘+−A𝒊Δ𝑖

𝑚
𝑘=1 )

1+𝑒
∑ 𝒂ik(𝜽𝑘+−A𝒊Δ𝑖)𝑚

𝑘=1
,                                       (22) 

where m is the number of dimensions, 𝒂ik is a vector of k slope estimates for item i, 𝜽𝑘 is 

a vector of k ability estimates, A𝑖 is the multidimensional discrimination, and Δ𝑖 is the 

multidimensional item difficulty. A number of compensatory MIRT models have been 

proposed for estimating subscores. These models include, but are not limited to, 
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multidimensional extensions of the 1PL, 2PL, 3PL, partial-credit, and graded-partial 

credit model (e.g., Adams, Wilson, & Wang, 1997; Béguin & Glas, 2001; Haberman, von 

Davier, & Lee, 2008; McDonald, 1997; Muraki & Carlson, 1995; Reckase, 1997; von 

Davier, 2008). Furthermore, as the most basic models estimated using item factor 

analysis can be viewed as reparameterized extensions of the 2PL model, the types of 

compensatory multidimensional models that can be estimated are quite vast (e.g., the 

higher-order and bifactor models; de la Torre & Song, 2009; Md Desa, 2012).  

2.2.2.6.2 Non-Compensatory MIRT Models 

In contrast to compensatory models, ability on one dimension does not 

compensate for ability on the other dimension(s) (de Ayala, 2009). Researchers have 

argued that the compensatory modeling approach is unrealistic to actual cognitive 

processes that occur when solving a test item (Ackerman, 1989). For example, if one has 

low reading ability, his/her probability of correctly responding to a math word problem 

should be low regardless of math ability as reading comprehension is required to solve 

the problem. Such an outcome is modeled by the multiplicative nature of the logit as 

demonstrated in the non-compensatory 2PLM: 

𝑃(𝑥𝑖 = 1) = ∏
𝑒𝒂ik(𝜽𝑘+−A𝒊Δ𝑖)

1+𝑒𝒂ik(𝜽𝑘+−A𝒊Δ𝑖)
𝑚
𝑘=1 ,                                    (23) 

which is essentially the product of 2PL models for m dimensions. Although non-

compensatory models seem to provide more realistic modeling as a deficit on one 

dimension cannot be overcome by a strength on other dimensions, compensatory models 

are still more popular. As an example, non-compensatory models that provide continuous 

latent variables are limited to Sympson (1978), Whitley (1980), and Embretson (1984).  
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2.2.2.6.3 Cognitive Diagnostic Models 

 CDMs have seen an increase in popularity due to their purported ability to 

provide more formative feedback than common IRT models. At the most basic level, 

CDMs differ in that they present examinees with information concerning mastery of 

discretely defined (mastered or unmastered) skills or abilities, whereas traditional IRT 

models provide an estimate of ability that is on a continuous scale. As noted by Lee and 

Sawaki (2009), the procedure for using CDMs to provide diagnostic feedback is as 

follows: (a) identify overall skills that are measured by a task (i.e., an item), (b) list the 

skills that are required for successfully answering an item (this is done for all items on the 

test), (c) apply a CDM to estimate the profiles of skill mastery for an examinee based on 

test performance, and (d) disseminate diagnostic feedback to stakeholders. This process 

joins both cognitive science and psychometrics to make assumptions about (a) the 

cognitive processes (skills) that are required by an examinee to complete a task and (b) 

the item characteristics that are intended to elicit these cognitive processes (Jang, 2008).  

According to Fu and Li (2007), at least 62 CDMs have been proposed in the 

literature. Although these models clearly differ to some degree, they all share a number of 

similar characteristics. For one, all models provide diagnostic information via 

multidimensional confirmatory modeling. The confirmatory nature of CDMs comes from 

the substantive definition (hypothesis) of the multiple skills (multidimensionality) 

necessary to complete tasks on the test, which is specified in the Q matrix. Furthermore, 

all CDMs allow for multiple criterion-referenced interpretations as the most basic CDMs 

provide a single cut-value on the latent dimensions separating mastery and non-mastery 

of skills. One of the last similarities is that most applications of CDMs consist of complex 
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factor loadings (Rupp & Templin, 2008); however, this leads to differences in CDMs on 

whether data are modeled in a compensatory or non-compensatory manner. Additional 

differences between CDMs lie in the types of observed response variables that the models 

can handle, as well as the scale of the latent variables (dichotomous or polytomous). 

Although CDMs provide both flexibility in modeling and have the potential to provide 

diagnostic information, they are rarely applied in current large scale assessments due to a 

lack of fine-grained understanding of the cognitive processes underlying many skills (Fu 

& Qu, 2012). 

Overall, MIRT allows for flexible modeling of subdomain performance as 

compensatory, non-compensatory, or latent class models can be specified. Furthermore, 

MIRT may provide a more straightforward approach to subscore estimation when 

compared to empirical Bayes augmentation procedures, such as the OPI and subscore 

augmentation methods, that require multiple steps (Buluth, 2013). For such methods, 

unidimensional parameter calibration is first conducted and then ancillary information is 

used to improve the precision of subscores. In contrast, MIRT models obtain ancillary 

information, such as subdomain covariances, within a single estimation procedure. That 

is, although parameter estimation of MIRT models is more complicated than UIRT 

models, it is, to a certain extent, more efficient (Fu & Qu, 2012). 

2.3 Comparative Analyses of Subscore Estimation Methodologies  

2.3.1 Comparison of Methods for Dichotomous Items 

 As there are a number of subscore estimation procedures that have been proposed 

in the literature, researchers have conducted comparative studies to provide 

recommendations on which procedures are most appropriate for practical use. As an 
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example, Bock, Thissen, and Zimowski (1997) sampled and resampled subsets of 

operational data (15-20 items of 100 total items) to compare the number correct, the 

maximum likelihood IRT (ML-IRT) percent-correct, and the Bayes IRT percent-correct 

subscore estimation procedures. As the number correct of the 100 items was known, root 

mean squared errors (RMSEs) of the predicted domain scores were computed. Results 

demonstrated that for the 15-item samples the average RMSE across 30 replications was 

10% and 50% smaller for the ML-IRT and Bayes percent-correct procedure, respectively, 

when compared to the CTT number correct procedure. The same RMSE differences 

between the ML-IRT percent-correct and the number correct procedure were observed 

under the 20 item condition, while the RMSEs for the Bayes percent-correct procedure 

were found to be the most superior (70% smaller than number-correct). Taken together, 

these results suggest that the IRT estimator was a more accurate predictor of the domain 

score than the CTT number correct method. 

 Luecht (2003) compared four approaches:1) standardized number correct scores 

(ZX), 2) EAP scores based on a unidimensional total-test 3PL model calibration (UIRT-

T), 3) MAP scores based on separate unidimensional 3PL model calibrations for the 

separate subdomains (UIRT-S), and 4) MAP scores based on a multidimensional 3PL 

model calibration (MIRT). Data were generated for 74 items that were modeled using a 

four-factor, oblique simple-structure MIRT model for 2,000 simulees. Dependent 

variables examined included: 1) subdomain correlations, 2) measurement errors, and 3) 

diagnostic score profiles. Results demonstrated subdomain correlations among the ZX, 

UIRT-T, and UIRT-S to all be near 1.0. In terms of standard errors, the UIRT-T 

subscores were found to have the largest standard errors (ranged from 0.43 to 1.61), 
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while the ZX procedure produced standard errors ranging from 0.42 to 0.78 across 

subdomains. Both UIRT-S and MIRT produced similar standard errors. The UIRT-T and 

UIRT-S were found to produce score profiles that were most similar to the true profiles; 

however, overall, subscore profiles were found to differ greatly, which points to the fact 

that the choice of subscore estimation procedure can greatly impact remediation 

decisions.  

Edwards and Verea (2006) compared Wainer et al.’s (2001) subscore 

augmentation method with IRT EAP estimates and raw subscores. Data were simulated 

based on a 3PL model for tests that differed in the number of subdomains, the number of 

items within a subdomain (reliability), and subscale correlations, which resulted in a total 

of 30 conditions. Specifically, simulated tests consisted of either two or four subdomains 

with subdomain correlations being equal to 0.3, 0.6, and 0.9. Four subscale lengths were 

chosen to simulate subscores that were either unreliable (α = .43 or α = .59) or reliable (α 

= .75 or α = .85). Across all conditions, the sample size was constrained to 2,000. The 

comparison of augmented versus non-augmented scores was compared in terms of RMSE 

(square root of the average squared difference between estimated and generated thetas), 

reliability (square of the correlation between true and estimated thetas), the percentage of 

simulees that had estimated augmented scores closer to truth than non-augmented scores, 

and classification accuracy.  

Results of the analysis were presented only for the two subdomain conditions as 

the findings were very similar to the four subdomain conditions. RMSE values were 

found to be relatively similar between the two subscore estimation procedures when both 

subdomains possessed either 10 or 20 items and a correlation of 0.6. In such conditions, 
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the reduction in RMSE for Wainer et al.’s (2001) method was found to be equal to 5%. 

However, in more extreme conditions, such as when the subdomains differed greatly in 

reliability and the subdomain correlation was equal to 0.9, RMSE reduction for the 

augmentation method was found to be equal to 33%. More realistic conditions of equal 

sample sizes and high correlations (0.9), demonstrated that when the number of 

subdomain items was equal to 5 or 10, RMSE differences ranged from 0.10 to 0.15. As 

expected, when there were a large number of subdomain items (20 or 40), RMSE 

differences decreased as the collateral information was not useful in improving the 

already reliable subdomains. In terms of reliability, the augmented procedure provided 

greatest improvements when the subdomain providing collateral information was much 

more reliable than the targeted subdomain by as much as 1.5 times. However, under 

conditions where the number of subdomain items was equal and the subdomain 

reliabilities was 0.3 or 0.6, the improvements in augmented reliability decreased between 

0.2 to 0.3. In examining the similarity between estimated and true thetas, the augmented 

procedure was found to more accurately estimate ability for simulees across all 

conditions by an average of 5% (ranged from 1% to 16%). Augmented scores were also 

found to improve classifications by 0.03% to 13.43% depending on the condition. Under 

realistic conditions (equal subdomain length and high inter-subdomain correlations), 

classification accuracy improved by only 0.15% to 3.82%. Overall, the results of this 

analysis demonstrated that the improvements gained from using an augmented procedure 

are a function of subdomain correlations and subdomain reliability.    
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2.3.2 Comparison of Methods for Mixed Format Tests 

 The two previous studies examined the accuracy of subscore estimation methods 

only in the context of dichotomous tests. To fill the gap in the literature, Shin (2007) 

compared the following methods for mixed-format tests: 1) percent-correct raw 

subscores, 2) 3PL/GPCM IRT true subscore based on item parameters estimated on in-

scale items only, 3) OPI with 3PL/GPCM theta estimates based on all items, 4) Wainer et 

al.’s (2001) score augmentation based on raw scores, and 5) Wainer et al.’s (2001) 

method with MCMC theta estimates. Four simulation factors were included: 1) number 

of examinees (250, 500, and 1,000), 2) test length (6, 12, or 18 items per subdomain), 3) 

subdomain correlations (0.5, 0.8, and 1.0), and ratio of constructed response (CR) over 

multiple-choice (MC) items (0%, 20%, and 50%), which resulted in 81 conditions. The 

dependent variables examined were objective score reliability, bias, and RMSE.  

 Reliability was found to be impacted minimally by sample size for all methods, 

except for method 2. Furthermore, differences in reliability were less than 0.1 across the 

different test lengths for all procedures. Interestingly, the proportion-correct method was 

found to have higher reliability than method 2 when the test length was equal to 18. 

When subdomain correlations were equal to 0.8, the differences in reliability were as 

great as 0.05. The largest difference in reliability for the proportion-correct method when 

compared to the other methods occurred when the subdomain correlations were equal to 

1.0. In terms of bias, independent variables including test length, subdomain correlations 

and the ratio of CR to MC items had the largest impact. Across all of these conditions, 

bias was found to be smallest for the proportion-correct method, while the magnitude 

differences for test length, subdomain correlations, and the ratio of CR to MC items was 
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equal to 0.01 to 0.05, 0.01 to 0.09, and 0.01 to 0.08, respectively. RMSE differences 

across conditions were found to be minimal for all methods (0.01 to 0.05). Overall, using 

augmentation methods maximally improved reliability by about 0.09 points and RMSE 

by approximately 0.05 points when compared to the non-augmented method.   

 An additional study that examined subscore estimation methods in mixed-format 

tests was conducted by Yao and Boughton (2007). Six methods were included: 1) 

percentage correct on subscale number-correct scores (NC), 2) multidimensional IRT 

Bayesian subscale scores (BMIRTSS), 3) multidimensional IRT Bayesian domain 

subscale scores (BMIRTDS), 4) OPI subscale scores, 5) an IRT pattern subscale scoring 

approach using maximum likelihood estimation (MIRTPSS), and 6) a unidimensional 

IRT objective-level Bayesian scoring approach (UIRTOJSS). Data were generated for a 

four-dimension simple structure model consisting of a total of 60 items and subdomain 

lengths ranging from 12 to 18 items. The accuracy of subscore estimates and 

classification accuracy were compared when varying sample size (1,000, 3,000, 6,000) 

and subdomain correlations (0, 0.1, 0.3, 0.5, 0.7, 0.9). As BMIRTSS, MIRTPSS, and 

UIRTOJSS were expressed on a three-digit latent score metric they were compared 

amongst each other, while the remaining procedures were compared separately.  

Results demonstrated that across all conditions, BMIRTSS provided improved 

ability estimate recovery when compared to MIRTPSS. Additionally, BMIRTSS and 

UIRTOJSS were found to have similar recovery when correlations were low (0.1); 

however, as the correlations increased, BMIRTSS provided improved recovery, while 

UIRTOJSS provided similar recovery across all conditions largely as it did not use the 

subdomain correlations in ability estimation. RMSE values were found to be smaller 
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across all conditions for BMIRTDS when compared to the OPI and NC methods. The 

largest differences were observed when the subdomain correlations increased as 

BMIRTDS utilized this information for estimation, while the OPI did not. Furthermore, 

sample sizes had little impact on the results as 1,000 simulees were sufficient. In terms of 

classification accuracy, NC was found to have the largest errors across all conditions with 

approximately 65% misclassification. In contrast, the lowest rates were observed for 

MIRTPSS. As the correlations increased, BMIRTSS and BMIRTDS provided 

classification errors at similar rates to the OPI. Overall, results of this study demonstrated 

the utility of applying MIRT models for subscore estimation and classification accuracy 

when compared to CTT augmented and non-augmented procedures.  

One study that solely compared augmented estimation procedures was conducted 

by de la Torre, Song, and Hong (2011). In this study, the augmented estimation 

procedures compared were: 1) Wainer et al.’s (2001) augmentation method (AS), 2) the 

higher-order item response model using MCMC estimation, 3) Bayesian 

multidimensional scoring using MCMC estimation and 4) the OPI. Data were generated 

based on the higher-order item response model for a fixed sample size of 1,000 simulees. 

The independent variables manipulated included the number of subdomains (2 and 5), 

test length (10, 20, and 30), and subdomain correlations (0, 0.4, 0.7, and 0.9), which 

resulted in a total of 24 conditions. The dependent variable of interest was ability 

parameter recovery, which was examined in terms of correlations, RMSE, bias, and 

estimated proportion correct. 

 Correlation analyses demonstrated that the OPI systematically underestimated 

ability, while the other procedures differed in correlations minimally (0.00 to 0.10). The 
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largest differences were observed when there were five subdomains, subdomain 

correlations of 0.90, and test lengths of 10. RMSE results suggested that as the test length 

increased, RMSE decreased. Such a pattern was consistent across methods and 

conditions. In terms of conditional bias, the greatest differences of ability estimates were 

seen at the extremes of the theta continuum (-1.75 to 1.75), whereas the majority of 

procedures were in high agreement around average ability. This result is reflected in 

differences in estimated proportion correct where across all conditions the differences 

ranged from 0 to 0.01. Overall, the results from this study suggested that the subscore 

estimation methodologies provided very similar results. The largest differences were 

observed at the extremes of the theta continuum where the higher-order and 

multidimensional scoring procedures provided more accurate results.  

An additional study that solely compared the utility of augmented subscores was 

conducted by Skorupski and Carvajal (2001). Whereas, Torre, Song, and Hong (2011) 

primarily investigated the advantages of multidimensional IRT approaches, the authors 

for this study were interested in unidimensional IRT approaches. More specifically, the 

three methods analyzed within this study included: 1) the OPI, 2) Wainer et al.’s (2001) 

method with raw scores, and 3) Wainer et al.’s (2001) method with IRT ability scores. 

Comparative analyses were based on real data that came from a statewide testing 

program consisting of four subdomains (subdomain length ranged from 11 to 15 items) 

for 17,266 examinees. The dependent variables examined included: 1) average change in 

examinee subscore ability estimates, 2) change in subscore reliability, and 3) subdomain 

correlations before and after augmentation. Within this study, change was defined as the 
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difference in criteria between augmented and raw scores (either CTT or IRT depending 

on augmentation method). 

 In comparing raw CTT scores with method 2, the average sample mean subscores 

were identical. However, the augmentation method did reduce the standard deviations, 

which led to average squared change ranging from 1.38 to 1.82 for the four subdomains. 

Similar patterns were observed when comparing IRT raw scores with methods 1 and 3. 

As an example, the average subscores between methods differed by 0.01 to 0.04 points, 

while the average standard deviations were reduced by an average of 14% to 28%. 

However, the average squared changes were smaller than the CTT methods as they 

ranged from 0.36 to 0.78. In terms of reliability, the subdomain internal consistency 

reliabilities (α) improved from 15% to 30%. As expected, the largest reliability improved 

was provided for the subdomain that had the fewest items. Furthermore, reliability 

improvements were consistent across all three augmentation methods. However, such 

improvements in reliability came at cost. That is, after applying augmentation procedures 

the subdomain correlations ranged from 0.97 to 1.00 across methods 1 through 3. In 

contrast, the subdomain correlations of the original CTT raw scores ranged from 0.62 to 

0.72. Overall, this study demonstrated the utility of using augmented scores for 

significantly improving subscore reliability, particularly when the subdomain test length 

was relatively short. However, this was accomplished in different ways by the 

augmentation methods. Specifically, the regression approaches (methods 2 and 3) 

increased reliability by making every examinee’s score profile look more like the overall 

score profile, while the OPI method increased reliability by making all subscore means 

and standard deviations essentially the same across the subdomains. These findings 
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suggested that the cost of increasing the reliability of subdomain scores is the loss of 

diagnostic score meaning at the individual examinee-level. Therefore, we are left with the 

question of how to improve the reliability of subscores without exaggerating subdomain 

interrelationships.   

2.4 Subscore Reporting in Practice 

 The previous sections of the literature review discussed different methods for 

estimating subscores and comparative studies that evaluated the technical adequacy of 

these procedures. This section will focus on two aspects: 1) how subscores are estimated 

and reported to stakeholders in practice and 2) reviewing previous validation studies that 

evaluated subscore added value to better understand the measurement characteristics (i.e., 

sample size, strength of subdomain correlations, and subdomain test length) that are 

required to support valid subscore reporting.   

 To evaluate how subscores are estimated in practice this section will rely on the 

literature related to feedback accessibility. One of the first and most well-known studies 

in this area was conducted by Goodman and Hambleton (2004). In this study, the authors 

sampled student score reports from 14 states (Connecticut, Delaware, Louisiana, 

Massachusetts, Minnesota, Missouri, New Jersey, Pennsylvania, Virginia, Wisconsin, 

and Wyoming), two Canadian provinces (British Columbia and Ontario), and three U.S. 

commercial testing companies (Harcourt Educational Measurement, CTB/McGraw-Hill, 

and Riverside Publishing). Although the authors focused on numerous aspects of score 

reporting, this study will rely primarily on their analysis of providing examinee-level 

diagnostic information. Within this study, diagnostic information was operationally 

defined as information that provided detail beyond the general subject-level.  
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Across 11 states, one province, and all three testing companies, diagnostic 

information was supplied to stakeholders in two ways: 1) results by subdomain and 2) 

specific skills that an examinee demonstrated or needs to improve. Furthermore, one 

Canadian province provided diagnostic information only to examinees that did not pass 

the respective subdomain. For these testing programs, subdomain results were reported 

numerically as raw scores, percent correct scores, or percentile rank scores. In terms of 

precision, no states or provinces provided reliability estimates of subdomain scores and 

only two commercial test publishers depicted confidence intervals when reporting 

subscores. In addition to reporting numerical subdomain performance, two states and one 

province reported particular strengths and weaknesses of individual students on the 

respective subdomain. These results led the authors to recommend that when reporting 

subdomain performance testing programs should report only scale scores, as well as 

validity and reliability evidence. Furthermore, they recommended that more testing 

programs should include customized interpretations of examinee subdomain 

performance, which would include concrete and easily-implemented suggestions to 

improve future performance.   

   A more recent study was conducted by Wang, Faulkner-Bond, and Shin (2012) in 

which subscore reporting practices for K-12 English language arts (ELA) assessments 

were evaluated across 46 states in the U.S. Score reports were coded for a number of 

important features including: (a) the presence of diagnostic information and the technique 

of reporting such information, (b) the types of subscores (i.e., raw scores, scale scores, 

performance-level descriptors), and (c) subscore reliability. Overall, 41 states were found 

to report subscore information that was most often reported using raw scores (28 states); 
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however, 15 states were found to combine raw and percent correct scores. Additionally, 

five states were found to report only scale scores, while six combined raw, percent-

correct, and scale scores. Interestingly, three states that only reported scale scores based 

such information on IRT expected scores. Four states were found to report either 

performance-level or performance-level descriptors without reporting any numerical 

scores, while 12 other states combined such descriptors with numerical scores. 

 In terms of reporting subscore precision, only six states provided confidence 

intervals; however, nine states included some cautioning that the reported subscores 

could be of low reliability. Overall, the authors found that states use a variety of 

approaches to reporting subscores. Although the most popular approach was to report raw 

subdomain scores, some states attempted to convey subdomain performance in creative 

ways, such as through performance levels, norm-referenced scores, and projected scale 

scores. These creative approaches were most likely driven as only 11 states reported one 

or more subscores that had a test length of 20 or more items. As a result, the authors 

suggest that further improvements are required in both test development and subscore 

reporting practices to provide more useful diagnostic information for improving student 

performance.     

Faulkner-Bond et al. (2013) extended the work of the previous two studies by 

specifically investigating score reporting practices on English language proficiency 

(ELP) assessments. In total, ELP score reports were evaluated for 24 individual states and 

one consortium (included 26 states and the District of Columbia). The authors found that 

across all testing programs subscores were reported and one state provided “next steps” 

for improving examinee ELP by subdomain performance. Subdomain performance for 
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each testing program was reported using scale scores, while five states additionally 

reported subdomain performance based on raw scores. According to the authors, the 

additional reporting of raw scores may have been due to a general misconception of scale 

score meaning by stakeholders (Trout & Hyde, 2006). Of the 27 score reports reviewed, 

only two provided measurement error or precision related to subdomain performance. 

Furthermore, only one of these states actually reported the meaning of measurement 

precision. Based on these findings, the authors recommended that testing programs 

should report the precision of subdomain performance as well as ensure reliability and 

utility. More specifically, they suggested that if subscores are not precise or reliable 

enough to provide added value, such information should not be reported. 

2.5 Validation of Subscore Reporting in Practice 

  As the previous section has highlighted that the majority of testing programs for 

K-12 content and ELP assessments report raw subscores as diagnostic information, this 

section will review: 1) methods for assessing the added value of reporting raw subscores, 

and 2) research that has evaluated validity evidence for reporting subscores based on raw 

or percent-correct scores. The latter objective will focus specifically on validity studies 

based on individual-level and group-level invariance analyses. From this review, 

recommendations will be made regarding measurement characteristics (e.g., sample size, 

subdomain test length, and subdomain inter-correlations) that are necessary for obtaining 

subscore added value.   
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2.5.1 Methods for Assessing the Adequacy of Reporting Raw Subscores  

2.5.1.1 Haberman’s (2008) Method 

 Haberman’s (2008) procedure evaluates whether subscores provided added value 

by assessing whether the observed subscore is a better predictor of the true subscore 

when compared to the observed total score. Within this framework, observed subscore 

and observed total score predictors of the true subscore estimates are as follows, 

respectively (Sinharay, 2010; Sinharay, Puhan, & Haberman, 2011): 

𝑠𝑠 = 𝑠̅𝑠 + 𝛼(𝑠 − 𝑠̅𝑠),                                                (24) 

where 𝑠𝑠 = the true subscore estimate based on the observed subscore, 𝑠̅𝑠 = the observed 

mean subscore for the sample, 𝛼 is equal to the reliability of the subscore, s = the 

observed subscore for subtest s, and 

𝑠𝑥 = 𝑠̅𝑠 + 𝑐(𝑥 − 𝑥̅),                                                (25) 

where 𝑠𝑥 = the true subscore estimate based on the observed total score, x = the observed 

total score, 𝑥̅ is the average total score for the sample and c is a constant that is based on 

the correlations of the subscores, as well as the reliabilities and standard deviations of 

both the subscores and total scores. 

To evaluate whether subscores provide added value over the total score, 

Haberman (2008) suggested evaluating the proportional reduction in mean squared error 

(PRMSE). The PRMSE is conceptually similar to a reliability coefficient, ranging from 0 

to 1; however, as noted by Sinharay (2010), the PRMSE can exceed 1 when the 

disattenuated correlations among the subscores exceed 1. Hence, a predictor with a larger 

PRMSE will provide more accurate diagnostic information than a predictor with a 

smaller PRMSE. The PRMSE (PRMSEs) for the predictor of the observed subscore, 𝑠𝑠, 
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has been shown to be equal to 𝜌2(𝑠𝑡, 𝑠), the subscore reliability (for computational details 

see Haberman, 2008).  

The PRMSE (PRMSEx) for the predictor of the observed total score, 𝑠𝑥, is equal 

to:  

𝜌2(𝑠𝑡, 𝑠𝑥)𝜌2(𝑥𝑡, 𝑥),                                                 (26) 

where 𝜌2(𝑥𝑡, 𝑥) is the total test reliability. However, the calculation of 𝜌2(𝑠𝑡, 𝑠𝑥) is 

computationally more involved, 

𝜌2(𝑠𝑡, 𝑠𝑥) =  
[(𝐶𝑜𝑣(𝑠𝑡,𝑥𝑡)]2

𝑉𝑎𝑟(𝑠𝑡)𝑉𝑎𝑟(𝑥𝑡)
,                                            (27) 

where 𝐶𝑜𝑣(𝑠𝑡, 𝑥𝑡) is equal to the sum of the corresponding row taken from the 

covariance matrix (See Sinharay, Puhan, & Haberman, 2011). The terms in the 

denominator are as follows: 

Var(st)=𝜎𝑠𝑥
2 ×  𝜌2(𝑠𝑡, 𝑠),                                              (28) 

where 𝜎𝑠𝑥
2  = the observed variance of the subscore, and 𝜌2(𝑠𝑡, 𝑠) = observed subscore 

reliability.  

Var(xt)=Var(x) × 𝜌2(𝑥𝑡, 𝑥),                                           (29) 

where 𝜌2(𝑥𝑡, 𝑥) = total score reliability. Var(x) is equal to: 

Var(x)=∑ 𝜎𝑠𝑥
2𝑛

1 + ∑ 𝑐𝑜𝑣(𝑠𝑥, 𝑠𝑥′)𝑝
1 ,                                       (30) 

where, n = number of subscores, 𝜎𝑠𝑥
2  = observed score variance, p = number of subscore 

pairs, 𝑠𝑥 = an observed subscore and 𝑠𝑥′ = an additional subscore.  

Upon calculating the proportion reduction in mean square error for both the subscore and 

total score predictors, PRMSEx and PRMSEs are directly compared. If PRMSEs is larger 

than PRMSEx, there is evidence that the observed subscore is a better predictor of the true 

subscore than the observed total score. A larger PRMSEs can also be reconceptualized to 
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represent a better prediction between the observed subscore and a parallel-form subscore 

(Sinharay, 2013). In either case, a larger PRMSEs would suggest that the subdomain 

score of interest provides accurate diagnostic information about the examinee. However, 

if PRMSEx is larger than PRMSEs, then one would conclude that the subscore did not 

provide added value over the total score as the observed total score provided more 

accurate diagnostic information (Sinharay, Puhan, & Haberman, 2010).     

2.5.1.2 Added Value Based on Classifications 

 Sinharay (2014) extended Haberman’s (2008) method for assessing whether 

subscores provide added value with respect to examinee classification. Within this 

approach, it is assumed that the joint distribution of the subscore and the corresponding 

subscore on a parallel form is approximated by a bivariate normal distribution. For this 

distribution, the estimated correlation between the forms is equal to PRMSEs as the 

correlation between corresponding subscores on two parallel forms is the subscore 

reliability. The estimated probability that an examinee passes a subtest on both of the 

parallel forms (P𝑠) is equal to: 

P𝑠 = ∫ [1 − Φ (
𝑞𝑠−𝑦𝑟1

√1−𝑟1
2

)] ϕ(𝑦)𝑑𝑦
∞

𝑦=𝑞𝑠
,                                  (31) 

where  

𝑞𝑠 =
(𝑐𝑠−𝑥̅𝑠)

𝑠𝑠
,                                                        (32) 

where 𝑐𝑠 is the cut score for classification, 𝑥̅𝑠 is the sample mean of the subscore, 𝑠𝑠 is 

the standard deviation of the subscore, and 𝑟1 is equal to PRMSEs (for further details the 

reader is referred to Abramowitz & Stegun, 1964). The estimated probability that an 

examinee fails a subtest on both of the parallel forms (F𝑠) is equal to: 
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F𝑠 = P𝑠 + 2Φ(𝑞𝑠) − 1,                                              (33) 

which leads to the estimated probability of the same classification across parallel forms 

being equal to: 

CC𝑠 = P𝑠 + F𝑠 = 2[P𝑠 + Φ(𝑞𝑠)] − 1,                                    (34) 

where CC𝑠 can be conceptualized as classification accuracy.  

  To assess whether a subscore has added value with respect to classification, one 

must compute classification accuracy of the total score. To do this, one must choose an 

appropriate cut score for the total score, which Sinharay (2014) represented as the same 

percentile of the sample total-score distribution (𝑐𝑠). Therefore, the probability that an 

examinee passes the total test on the original form and the subtest on a parallel form is: 

P𝑡 = ∫ [1 − Φ (
𝑞𝑡−𝑦𝑟2

√1−𝑟2
2

)] ϕ(𝑦)𝑑𝑦
∞

𝑦=𝑞𝑠
,                                    (35) 

where 𝑟2 is the estimated correlation between the total score on the original form and the 

subscore on a parallel form, which is equal to √PRMSEsPRMSEt. The probability of the 

same classification from the total score on the original form and the subscore on a 

parallel form is: 

CC𝑡 = P𝑡 + F𝑡 = 2[P𝑡 + Φ(𝑞𝑡)] − 1,                                    (36) 

where  

F𝑡 = P𝑡 + 2 Φ(𝑞𝑡).                                                 (37) 

Therefore, to assess whether a subscore has added value with respect to classification, 

one can compare CC𝑠 and CC𝑡. That is, if CC𝑠 is larger than CC𝑡, one can conclude that a 

subscore has added value with respect to classification.  
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Sinharay (2014) applied this procedure to data collected for 4,000 examinees on 

the TerraNova test, which has five main content areas that include language (34 items), 

mathematics (57 items), reading (46 items), science (40 items), and social studies (40 

items). Twenty cut scores were created across the 1st to 99th percentile of the sample 

distribution for each subscore and subscore added value was evaluated for each cutscore. 

Results demonstrated that inferences regarding added value were consistent across all cut 

scores, except for those at the extremes (e.g., the 1st and 95th percentiles). This result 

indicates that Haberman’s (2008) method would make the same inferences as Sinharay’s 

(2014) method except for at the extreme cut scores. However, it is argued that in practice 

cut scores at the extreme levels are of little concern, particularly as there is generally less 

measurement precision at those points of the score distribution, which make it difficult to 

accurately differentiate examinees with extreme scores. Therefore, Haberman’s (2008) 

method appears to provide robust information concerning added value of reporting 

subscores even in relation to classifications. 

2.5.1.3 Assessing Invariance of Subscore Added Value  

As professional standards recommend that scores should not be reported for 

individuals unless comparability of these scores is established (AERA, APA, & NCME, 

2014), Haberman and Sinharay (2013) extended Haberman’s (2008) method to assess 

subscore added value invariance. In addition to professional standards, the motivation for 

this new method is that previous analyses have assumed the validity of diagnostic 

information is invariant across all subgroups. However, such an assumption is limited as 

previous research has demonstrated differential subscore performance by gender and 

ethnic groups (e.g., Livingston & Rupp, 2004; Stricker, 1993). Therefore, as an extension 
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of Haberman’s (2008) method, Haberman and Sinharay (2013) developed a procedure to 

determine whether inclusion of subgroup information (i.e., subgroup means and 

reliabilities) improves subscore estimation when compared to ignoring subgroup 

information. To ascertain whether the use of subgroup information leads to better 

estimation of the true subscore, PRMSEsg* is compared to PRMSEsg. More specifically, 

the * subscript denotes that the PRMSE includes subgroup information while the PRMSE 

values without the * subscript denotes that subgroup information is not included, but the 

estimates are based solely on data from subgroup g. PRMSEsg* is computed as: 

𝑃𝑅𝑀𝑆𝐸𝑠𝑔∗ = (1 −
𝑠̅𝑔−𝜌̂𝑠𝑔

2 (𝑠−𝑠̅𝑔)

𝑠̅𝑔
) −

(𝜌̂𝑠𝑔
2 −𝜌̂𝑠

2)2

𝜌̂𝑠𝑔
2 −

−(1−𝜌̂𝑠
2)2

√𝑠̅𝑔
,                    (38) 

where 𝑠 is the observed score s, 𝑠̅𝑔 is the group g mean for observed score s, 𝜌̂𝑠𝑔
2  is the 

reliability of subscore s in group g, and 𝜌̂𝑠
2 is the reliability of subscore s in the entire 

sample. In contrast, PRMSEsg is equal to the subscore reliability for group g. If PRMSEsg* 

reduces PRMSEsg from 1.0 by 10%, one can conclude that subgroup information leads to 

improved true subscore estimation, which would require a follow-up analysis to reveal 

why there is a lack of subscore added value invariance.   

2.5.1.4 Added Value of Reporting Subscores at the Aggregate-Level 

 As noted by Fu and Qu (2012), little research has been conducted to evaluate the 

validity of reporting subscores at the aggregate-level. To address this shortcoming in the 

literature, Haberman, Sinharay, and Puhan (2009) extended Haberman’s (2008) method 

for application in assessing the added value of reporting institutional subscores. Within 

this method, the validity of reporting institutional subscores is based on whether the 

average institutional subscore (𝑠̅) is a better predictor of the subscore component for the 
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institution of the examinee (𝑠𝐼) than the average total score for the institution (𝑥̅). To 

assess this, PRMSE values for 𝑠̅ and 𝑥̅ must be computed. This is done as follows: 

𝑃𝑅𝑀𝑆𝐸𝑆̅ = 𝜌2(𝑠𝐼 , 𝑥̅) =
𝜎2(𝑠𝐼)

𝜎2(𝑠̅)
,                                          (39) 

where  

𝜎2(𝑠𝐼) = 𝐾−1(𝑀𝑠𝑠𝐼 − 𝑀𝑠𝑠𝑒),                                           (40) 

where  

𝐾 = 𝑁𝐶/(𝐽 − 1),                                                    (41) 

where J is the number of institutions, and 

𝐶 = 1 − ∑ (
𝑛𝑗

𝑁
)2𝐽

𝑗=1 ,                                                 (42) 

where 𝑛𝑗  is the number of examinees in institution j, and N is the total number of 

examinees, and 

𝑀𝑠𝑠𝐼 = (𝐽 − 1)−1 ∑ 𝑛𝑗(𝑠̅𝑗 − 𝑠̅.)
2𝐽

𝑗=1 ,                                    (43) 

where 𝑠̅. is the mean subscore for all examinees, and 

𝑀𝑠𝑠𝑒 = (𝑁 − 𝐽)−1 ∑ ∑ (𝑠𝑖𝑗 − 𝑠̅𝑗)2𝑛𝑗

𝑖=1
𝐽
𝑗=1 ,                                  (44) 

where 𝑠𝑖𝑗 is the subscore for examinee i in institution j. The 𝑃𝑅𝑀𝑆𝐸𝑆̅ is then compared to 

the 𝑃𝑅𝑀𝑆𝐸𝑥̅, which is computed as follows: 

 𝑃𝑅𝑀𝑆𝐸𝑥̅ = 𝜌2(𝑠𝐼 , 𝑥𝐼)𝜌2(𝑥𝐼 , 𝑥̅),                                        (45) 

where  

𝜌2(𝑠𝐼 , 𝑥𝐼) =
𝑐̂(𝑠𝐼,𝑥𝐼)

𝜎̂(𝑠𝐼)𝜎̂(𝑥𝐼)
,                                                (46) 

where 

𝑐̂(𝑠𝐼 , 𝑥𝐼) = 𝑀𝑠𝑥𝐼 − 𝑀𝑠𝑥𝑒,                                             (47) 

where  
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𝑀𝑠𝑥𝐼 = (𝐽 − 1)−1 ∑ 𝑛𝑗(𝑠̅𝑗 − 𝑠̅.)(𝑥̅𝑗 − 𝑥̅.),𝐽
𝑗=1                                (48) 

where 𝑥̅𝑗 is the mean overall score for institution j and 𝑥̅. is the overall mean score across 

all examinees, 

𝑀𝑠𝑥𝑒 = (𝑁 − 𝐽)−1 ∑ ∑ (𝑠𝑖𝑗 − 𝑠̅𝑗)(𝑥𝑖𝑗 − 𝑥̅𝑗)
𝑛𝑗

𝑖=1
𝐽
𝑗=1 ,                         (49) 

and  

𝜌2(𝑥𝐼 , 𝑥̅) =
𝜎2(𝑥𝐼)

𝜎2(𝑥𝐼)+𝜎(𝑥𝑒)/𝑛
,                                            (50) 

where  

𝜎(𝑥𝑒) = (𝑁 − 𝐽)−1 ∑ ∑ √(𝑠𝑖𝑗 − 𝑠̅𝑗)2𝑛𝑗

𝑖=1
𝐽
𝑗=1 .                              (51) 

Upon computing 𝑃𝑅𝑀𝑆𝐸𝑆̅  and 𝑃𝑅𝑀𝑆𝐸𝑥̅, they are directly compared to assess the 

validity of reporting institutional subscores. More specifically, if 𝑃𝑅𝑀𝑆𝐸𝑆̅ > 𝑃𝑅𝑀𝑆𝐸𝑥̅, 

the average subscore for the institution is a better predictor of the institutional subscore 

mean, 𝑠𝐼, than does the average total score for the institution.  

2.5.1.5 Brennan’s (2012) Utility Index 

 The procedures developed by Haberman and colleagues are motivated by Kelley’s 

(1947) regressed-score estimates (RSEs). However, as noted by Brennan (2012), the 

regression of true scores on observed scores leads to some fundamental inconsistencies 

with certain CTT assumptions. For example, due to regression to the mean, high 

examinee scores are lowered toward the mean, while low examinee scores are increased 

toward the mean. Additionally, the CTT assumption that an examinee’s true score is 

equal to the expected value over replications of the measurement procedure is untenable 

for RSE methods. Furthermore, RSE methods assume a linear regression, which is not 

assumed in CTT. To overcome some of these limitations, Brennan (2012) introduced the 
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Utility Index to assess subscore added value, which is based purely on CTT, traditional 

conceptions of reliability, and is not reliant on RSEs.    

Brennan’s (2012) method considers three observed-score random variables, which 

include X (i.e., the subscore of interest), Z (i.e., the total score), and Y (i.e., the non-X 

component of Z). Based on CTT assumptions, these three variables are decomposed into 

true-score (T) and error (E) random variables: 

𝑋 = 𝑇𝑥 + 𝐸𝑥                                                       (52) 

𝑌 = 𝑇𝑦 + 𝐸𝑦                                                       (53) 

𝑍 = (𝑇𝑥 + 𝐸𝑥) + (𝑇𝑦 + 𝐸𝑦).                                          (54) 

Under CTT assumptions, the reliability of X is: 

𝜌2(𝑇𝑥, 𝑋) = [
𝜎(𝑇𝑥,𝑋)

𝜎(𝑇𝑥)𝜎(𝑋)
]

2

=
𝜎2(𝑇𝑥)

𝜎2(𝑋)
,                                      (55) 

where X serves as an estimator of 𝑇𝑥. As with Haberman’s (2008) method, the question of 

added value is based on whether Z is a better estimator of 𝑇𝑥 than X. Therefore, replacing 

Z for X in equation 25, it follows that:     

𝜌2(𝑇𝑥, 𝑍) = [
𝜎(𝑇𝑥,𝑍)

𝜎(𝑇𝑥)𝜎(𝑍)
]

2

,                                            (56) 

where 𝜌2(𝑇𝑥, 𝑍) is referred to as the index of utility (U), which is an index that quantifies 

the utility of using Z as an estimator of 𝑇𝑥 that ranges from 0 to 1. However, for 

simplicity of calculation, the author presents an alternative formula for expressing U 

without true-score parameters, which he shows to be equal to: 

𝑈 =
[𝜎(𝑋,𝑍)−𝜎2(𝐸𝑥)]

2

𝜌𝑥
2𝜎2(𝑋)𝜎2(𝑍)

,                                                  (57) 

where, 𝜎2(𝐸𝑥) is typically estimated as: 

𝜎2(𝐸𝑥) = 𝜎̂2(𝑋)(1 − 𝜌̂𝑥
2).                                            (58) 



 
 

48 
 

U by itself does not provide information regarding the merits of using Z rather than X. As 

a result, the author developed the following comparative statistic:  

𝑈̃ =
𝑈 (1−𝑈)⁄

𝜌𝑋
2 (1−𝜌𝑋

2 )⁄
,                                                      (59) 

where 𝑈̃ is the relative utility of using Z instead of X. A nice property of 𝑈̃ is that 

100|1 − 𝑈̃|% is the percentage change in the length of the subscore that is needed to 

obtain a reliability equal to U. More specifically, if 𝑈̃≤1, the use of the subscore of 

interest is supported with respect to reliability. However, if 𝑈̃>1, 100|1 − 𝑈̃|% indicates 

the percentage increase in test length that is required for the subscore to obtain a 

reliability consistent with the total score. Although Brennan’s (2012) method provides 

some nice features, such as calculation of the U statistic as well as a relative utility index 

that is akin to Spearman’s prophecy formula, the author demonstrated that across SAT 

verbal subscores both his and Haberman’s (2008) method led to the same conclusions 

regarding subscore added value. 

2.5.2 Studies That Have Evaluated Subscore Validity for Operational Data 

2.5.2.1 Individual-Level Subscore Validity  

 A number of operational testing programs have applied Haberman’s (2008) 

method to assess the added value of reporting subdomain performance. As an example, 

Lyrén (2009) examined the utility of reporting subscores on the SweSAT, which is the 

Swedish version of the SAT. In this study, Lyrén applied Habermen’s (2008) method to 

the following five proposed subtests that were administered to as many as 41,530 

examinees (analyses were based on multiple test forms): vocabulary (40 items), Swedish 

Reading Comprehension (20 items), English Reading Comprehension (20 items), Data 

Sufficiency (22 items), and Diagrams, Tables, and Maps (20 items). Average subdomain 
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correlations with the total score were found to range from 0.74 to 0.84, while the average 

subdomain inter-correlations ranged from 0.40 to 0.66. The relatively moderate 

subdomain inter-correlations and long subdomain test lengths (minimum of 20 items for 

each subdomain) led to larger PRMSES values for four of the five subtests, which 

provided validity evidence for subscore reporting on these four subdomains.  

Sinharay (2014) applied Haberman’s (2008) method to data collected from 4,000 

examinees on the TerraNova test, which is composed of five main content areas that 

include language (34 items), mathematics (57 items), reading (46 items), science (40 

items), and social studies (40 items). Internal consistency reliability (coefficient α) across 

subscores ranged from 0.83 to 0.92, while the inter-subdomain correlations ranged from 

0.81 to 0.97. In computing the ratio of PRMSEs, the author found that all subscores, 

except for the science subdomain, provided added value. Although both Lyrén (2009) and 

Sinharay (2014) demonstrated subscore added value in operational contexts, not all 

analyses of subscore utility support the reporting of diagnostic scores.  

As an example, Sinharay, Haberman, and Puhan (2007) examined subscore added 

value for a basic skills test administered to as many as 3,240 (multiple forms were 

administered) teachers. The test was composed of six subdomains: 1) reading skills, 2) 

reading application, 3) mathematics skills, 4) mathematics applications, 5) writing skills, 

and 6) writing application. The number of items per subdomain was not provided, but the 

overall internal consistency reliability was 0.94 for all test forms. Although, the inter-

subdomain correlations ranged from 0.54 to 0.76, larger PRMSEX values were obtained 

for all subdomains across all test forms.  
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Similar findings were obtained by Puhan, Sinharay, Haberman, and Larkin, 

(2008) who examined subscore added value for six certification tests that differed in 

content (mathematics, social studies, and foreign languages), item format (purely 

multiple-choice, purely constructed-response, and a mixture of multiple-choice and 

constructed-response items), number of subdomains (three, four, and six), as well as 

subdomain test-length (2 to 30 items). The authors failed to report either subdomain 

reliabilities or inter-correlations, but did find that across all six tests, subscore added 

value was found to be lacking with PRMSES values smaller than PRMSEX values by as 

much as 0.60 points on a 0 to 1 scale; however, as the test length expanded, the 

magnitude of the difference in PRMSE values decreased, presumably as the subdomain 

reliabilities improved.  

Haberman (2008) examined subscore added value for both the SAT I math and 

verbal sections for the 2002 administration. The verbal section was comprised of three 

subdomains, which had test lengths of 19, 19, and 40, respectively. These subdomains 

were found to possess correlations with the total score that ranged from 0.87 to 0.96. 

Similarly, the math section was comprised of three subdomains with 10, 25, and 25 items, 

respectively. The two subdomains that possessed 25 items had correlations with the total 

score that were equal to 0.95, while the shorter subdomain had a correlation of 0.82 with 

the total score. For the verbal subdomains, PRMSES ranged from 0.72 to 0.84, while 

PRMSEX ranged from 0.87 to 0.89, suggesting that the observed total score was a better 

predictor of the true subscore than the observed subscore. A similar finding was obtained 

for the math subdomains as the PRMSEX values (ranged from 0.89 to 0.92) were much 

higher than the PRMSES values (ranged from 0.64 to 0.87).   
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Haberman (2008) also examined the utility of reporting subscores for the 

PRAXIS examination, which is comprised of four subdomains with equal test lengths of 

25 items: English language arts, mathematics, citizenship and social science, and science. 

All subdomains had correlations with the total score that ranged from 0.79 to 0.84. 

Although, the four subdomains had equal test lengths and similar total score correlations, 

the English language arts (PRMSES = 0.73; PRMSEX = 0.70) and mathematics (PRMSES 

= 0.79; PRMSEX = 0.73) sections were found to have added value, while the citizenship 

and social science (PRMSES = 0.68; PRMSEX = 0.77) as well as the science (PRMSES = 

0.69; PRMSEX = 0.80) sections did not.  

In a more thorough evaluation of subscore reporting practices, Sinharay (2010) 

examined 25 operational tests to assess if reporting subdomain scores supplied added 

value for examinees over the total test score estimate. Across these 25 operational tests, 

the number of subscores (ranged from 2 to 7), the average subdomain test length (ranged 

from 11 to 69), the average internal consistency reliability (ranged from 0.38 to 0.92), 

and the average subdomain inter-correlations (0.42 to 0.77) differed greatly. In examining 

PRMSE values, the author found that of the 25 tests, only nine were found to have at 

least one subscore of added value, while just two tests provided added value for all 

reported subscores. These latter two tests (SAT I and an ELP assessment) were each 

comprised of two subdomains with long average subdomain test lengths (43 and 69 

items), high average subdomain reliability (α = 0.90 and α = 0.92), and relatively 

moderate average subdomain inter-correlations (0.68 and 0.70). Overall, the average 

number of items for the subtests with added value ranged from 24 – 69, the average 
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subscore reliability ranged from 0.72 – 0.92, and the average disattenuated subscore 

inter-correlations ranged from 0.71 – 0.90.  

To better generalize the results from analyzing operational tests, Sinharay (2010) 

conducted a simulation study to understand the conditions in which subscore added value 

is provided. Within this study, the independent variables examined included: 1) number 

of subscores (2, 3, or 4), 2) length of the subscores (10, 20, 30, or 50), 3) mean 

subdomain inter-correlations (0.70, 0.75, 0.80, 0.85, 0.90, or 0.95), and 4) sample size 

(100, 1,000, or 4,000). Results from this analysis led to numerous conclusions regarding 

the characteristics that are necessary for obtaining subscore added value. For one, as the 

subdomain test length increased and the subdomain inter-correlations decreased added 

value is most often obtained. Specifically, if the average number of items in a subdomain 

is equal to 10, added value is rare only when the average subdomain inter-correlations are 

0.70, whereas inter-correlations that are stronger provide no added value. Regardless of 

test length, subscores rarely have added value when the inter-correlations are equal to 

0.90 or higher. If the average subdomain test length is 20 items or higher, added value is 

largely dependent on the strength of subdomain inter-correlations. More specifically, for 

length 20 and correlation ≤ 0.75, subscores have added value 50% of the time, while the 

same percentage of added value is obtained for a test length of 50 and correlations ≤ 0.85. 

Furthermore, the number of subdomains was found to not impact results, while sample 

size had minimal impact; however, it should be noted that the author did not examine 

standard errors or the precision of the point estimate (PRMSE) that is used to judge the 

utility of reporting subscores. These findings mirror the recommendations provided by 

Sinharay, Haberman, and Puhan (2007) and Haberman (2008), which suggest that 
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subscores will provide added value when they are reliable and distinct from one another. 

2.5.2.2 Subscore Added Value Invariance  

One of the major limitations of previous research evaluating the validity of 

subscore reporting is that such analyses have assumed that the validity of diagnostic 

information is invariant across all subgroups. However, such an assumption is limited as 

previous research has demonstrated differential subscore performance by gender and 

ethnic groups. For example, Stricker (1993) observed gender differences on subtests of 

the Law School Admissions Test (LSAT) for the logical reasoning subdomain. 

Differential gender performance was also found on constructed response tests across 

Praxis Principles of Learning, Teaching tests for secondary school teachers, and in 

subject-knowledge tests of social studies, science, and middle school mathematics 

(Livingston & Rupp, 2004). These results suggest the need to assess the invariance of 

subscore added value across subgroups. That is, analyzing added value for subscores 

across all examinees may bias the inferences made from such analyses as subgroups may 

possess differential inter-subscore correlations. If this occurs, the validity of diagnostic 

information at the sub-domain level may differ across subgroups. 

Haberman and Sinharay (2013) evaluated a new procedure (described previously) 

that incorporates subgroup information to improve subscore estimation in operational 

data. The improvement of incorporating subgroup collateral information was evaluated 

by comparing PRMSE values to those computed by Haberman’s (2008) method for four 

operational tests by ethnic groups. Data for test 1 came from 4,242 examinees that were 

assessed on two subdomains that were comprised of 205 multiple-choice items in total. 

Test 2 (N = 1,932) also possessed two subdomains with each subdomain being comprised 
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of 100 multiple-choice items. Tests 3 and 4 were teacher-certification tests, which had 

four (total of 120 items) and three (total of 75 items) subscores that were reported, 

respectively. For these tests, data were collected from 5,270 and 6,643 examinees, 

respectively. Subscore invariance for tests 1 and 2 were based on five ethnic groups, 

while tests 3 and 4 were based on four ethnic groups. Across tests, one ethnic group was 

made up by combining small ethnic groups (less than 100 examinees) and those who did 

not provide their ethnicity. Results provided two major findings: 1) subscore information 

did not improve true subscore estimation, and 2) the ethnic groups evaluated possessed 

subscore invariance across all subdomains and tests. More specifically, the inferences 

concerning subscore added value were the same across Haberman and Sinharay’s (2013) 

method that incorporates subgroup information and that of Haberman’s (2008), which 

does not. Furthermore, when applying Haberman’s (2008) method  at the individual 

group-level, there was no added value for any subscores across ethnic groups; however, 

when applying the method across all examinees (i.e., not taking into consideration ethnic 

groups),  tests 1 and 2 were found to have added value for one subdomain.  

Sinharay and Haberman (2014) extended the work of Haberman and Sinharay 

(2013) by evaluating four operational tests for subscore added value invariance. These 

four tests were comprised of a measure of achievement in several disciplines (Test A), an 

internal English proficiency assessment (Test B), a teacher certification assessment (Test 

C), and an assessment for prospective teachers in K – 12 (Test D). Test A was comprised 

of two test forms (Test A1 and Test A2) with both Test A1 (N = 4,242) and Test A2 (N = 

1,932) being comprised of 200 total multiple-choice items and three subdomains. In 

contrast, Test B (N = 14,000) was comprised of four subdomains with a total of 84 
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dichotomous, Likert, and constructed-response items. Test C was administered to 2,000 

examinees and was comprised of two subscores measured by a total of 40 multiple-

choice and three constructed-response items. Lastly, Test D (N = 6,643) had a total of 

120 multiple-choice items that were divided into four subdomains. Invariance was 

assessed by ethnicity, language, gender, and both gender and ethnicity for Tests A, B, C, 

and D, respectively. For both ethnicity and language invariance analyses, one group was 

comprised of small minorities (ethnic or language) and examinees that did not specify 

their group membership (i.e., their ethnicity or language). Subscore added value 

invariance was assessed differently from Haberman and Sinharay (2013) in that PRMSE 

values were calculated for both the total and individual group samples. If differences 

were noted between groups, a subscore was determined to possess a lack of subscore 

added value invariance. The authors also computed augmented subscores using a 

procedure akin to Wainer et al. (2001) and evaluated their invariance. 

Results demonstrated that for Tests A2, B, and C subscore added value invariance 

was obtained across ethnic, linguistic, and gender groups, respectively. However, for tests 

A1 and D a lack of invariance was observed for ethnic groups (i.e., no differences in 

subscore added value were observed for gender groups on Test D) when using 

Haberman’s (2008) method separately across groups. In more closely examining 

plausible reasons for a lack of invariance, a number of important trends were noted. For 

one, large differences in subscore means between groups did not always lead to a lack of 

invariance. Secondly, the authors found that differential item functioning (DIF) was not 

related to a lack of invariance; however, as noted by the authors, the amount of DIF 

present was relatively “small.” The factor proposed by the authors to have the largest 
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impact was differences in inter-subdomain correlations. The reason for this is that as the 

inter-subdomain correlations decrease, PRMSEX values also decrease (see Haberman 

(2008) for computational details), which leads to a lack of invariance. An additional trend 

was that differential inferences related to subgroup added value disappeared when 

applying the augmentation procedure that is akin to Wainer et al.’s (2001) procedure. As 

a result, the authors suggest that in the future testing programs interested in providing 

diagnostic information should report augmented subscores.  

2.6 Summary of Literature Review 

A number of subscore estimation methodologies have been proposed to meet both 

the increased demand for diagnostic information and the psychometric challenge of 

providing reliable scores that are often based on short subdomain test lengths. These 

estimation procedures can be categorized into: 1) simple and 2) augmented approaches. 

Simple approaches are comprised of reporting number or percent-correct scores and 

estimating abilities using unidimensional IRT estimation (either independently estimating 

subdomains separately or using fixed item parameter estimation [based on estimates from 

calibrating all items simultaneously] and estimating ability based on items that belong to 

the subdomain of interest). However, simple approaches are limited in that they do not 

address the issue of low subdomain reliability. To address this concern, researchers have 

developed augmented procedures, which use collateral information from total or other 

subdomain scores to improve reliability of the subdomain ability estimates. These 

procedures can be categorized as either CTT (e.g., Kelley’s [1947] regressed-score 

estimate method, and Wainer et al.’s [2001] method) or IRT (e.g., the Objective 
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Performance Index Yen’s [1987], Wainer et al.’s [2001] method, the Out-of-Scale 

Information method [Kahraman & Kamata, 2004], and MIRT models) procedures. 

 To assess which augmentation procedure provides the most accurate ability 

estimation and improved reliability, researchers have conducted multiple comparative 

studies. Overall, a number of conclusions can be drawn from these studies. For one, when 

the subdomain test lengths are sufficiently long (e.g. 30 items or more) all subscore 

procedures perform similarly (Fu & Qu, 2012). Secondly, when subdomain lengths are 

shorter, augmentation procedures have been shown to improve subscore reliability, 

particularly when subdomain inter-correlations are high (e.g., r = 0.90) when compared to 

number or percent-correct scores; however, improvements in reliability decrease as the 

inter-subdomain correlations decrease (r = 0.30 to r = 0.60; Edwards & Vevea, 2006). 

Thirdly, although MIRT models are theoretically appealing, they have not demonstrated 

improved performance in reducing subdomain estimation error when compared to other 

CTT or UIRT augmentation methods (Luecht, 2003). Lastly, when applying 

straightforward methods, such as the OPI and Wainer et al.’s (2001) method using both 

raw and theta scores, reliability is improved by making individual subdomain scores 

nearly identical for each examinee or making the subscore profiles more similar to the 

overall sample score profile (Skorupski & Carvajal, 2010). Such a finding suggests that 

improvements in subdomain reliability may come at the cost of subdomain 

distinctiveness, which leads to a loss in diagnostic information at the individual-level.   

Although augmentation procedures have been shown to improve subscore 

reliability at a cost, analyses of score reporting in practice show that nearly all testing 

programs reviewed reported subscores as number or percent-correct. Furthermore, when 
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reporting subscores, testing programs were found to rarely report subscore precision. As a 

result, it is of little surprise that a number of issues arose when evaluating subscore added 

value for operational testing programs. For one, the majority of tests reviewed in the 

literature were found to lack added value across all subscores reported, due to either 

strong subdomain inter-correlations (>.90) or low subdomain reliabilities as subdomain 

test lengths were short (less than 20 items). Sinharay (2010) conducted simulation 

analyses to better understand the conditions in which subscore added value is present and 

found that when the inter-correlations were ≥ 0.90, added value was rarely present. In 

contrast, when the subdomain test lengths increased to around 20 items and subdomain 

inter-correlations ≤ 0.70, added value was obtained at a rate of 50%. 

 Previous analyses of subscore added value have been limited in that they have 

assumed that the validity of diagnostic information is invariant across all subgroups. Such 

an approach assumes that the subdomain reliabilities and the inter-subdomain correlations 

are equal across all sub-populations within the examinee pool. To address these possible 

issues and to ensure score comparability, Haberman and Sinharay (2013) developed an 

extension of Haberman’s (2008) method to incorporate subgroup information to improve 

subscore estimation. Although the results demonstrated that subscore estimation did not 

improve with such information, Sinharay and Haberman (2014) did find that across a 

number of tests, subscore added value invariance was found to be lacking for a number of 

ethnic and linguistic groups. These findings point towards the need to evaluate subscore 

added value for examinee subgroups. 

 The current approach proposed by Sinharay and Haberman (2014) for evaluating 

the utility of reporting diagnostic information based on manifest characteristics assumes 
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that measurement models are invariant across individuals within demographic subgroups. 

However, as Reise and Hidaman (1999) suggest, “…models are good (i.e., fit well) for 

some people, some of the time, and there simply is no such thing as a … model that 

adequately represents important psychological phenomena equally well for all individuals 

in a given population” (p. 4). Such a statement holds true to subscore reporting as the 

added value of diagnostic information should not be equal across all individuals within a 

demographic subgroup, but instead the need for such information should be based on test 

performance. To this end, it is proposed that multivariate outlier and non-parametric 

person-fit statistics are applied to individual-level data to identify aberrant score profiles 

and response patterns respectively due to multidimensionality. This approach may allow 

for both the detection of examinees that need diagnostic information as well as the ability 

to provide valid subscores for these individuals.  
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CHAPTER 3 

METHODOLOGY 

3.1 Overview 

As the goal of this study is to find an alternative approach to reporting distinct 

raw subscores, the utility of applying a general multivariate outlier detection method as 

well as a non-parametric person-fit statistic were evaluated for assessing divergence from 

a unidimensional model at the individual-level. Ideally, such approaches will allow for 

both the identification and evaluation of subscore added value invariance of unobservable 

groups (i.e., groups not based on demographic similarities) that differ in the underlying 

dimensionality of the assessment administered. The effectiveness of these general 

approaches were investigated in terms of Type I error, power, as well as recovery of 

added value classifications based on Haberman’s (2008) method when manipulating the 

proportion of examinees with multidimensional score profiles, the degree of 

multidimensionality (based on a correlated-traits model), and subdomain test lengths. 

Specifically, the following research questions were addressed: 

1. How multidimensional do data need to be for subscores to have added value (i.e., 

be better predictor of the true subscore than the total score)?  

2. As data depart from unidimensionality, how well do the Mahalanobis Distance 

and HT person-fit indices identify aberrant score profiles and patterns with respect 

to Type I error, power, and recovery of descriptive statistics? 

3. When separating examinees into groups based on score profiles or response 

patterns that may differ significantly from the total sample, under what conditions 
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does subscore added value invariance hold [based on Haberman’s (2008) 

method]?   

These research questions were investigated via a number of simulation analyses, while 

the practical utility of applying procedures to flag aberrant score profiles or response 

patterns due to multidimensionality were evaluated for a large-scale high-stakes 

assessment. It should be noted that “added value” is defined in this study using 

Haberman’s (2008) definition which claims subscores have added value when the 

observed subscore of interest is a better predictor of the respective true subscore than the 

observed total score. The sections that follow describe in detail the methodological 

procedures that were implemented.  

3.2 Simulation Study 

3.2.1 Data Generation 

 Data were generated separately for two groups administered an n multiple-choice 

item test comprised of four subdomains. The two groups simulated in this study differed 

on the degree of multidimensionality underlying the ability estimates on the four 

subdomains. Specifically, Group 1 possessed a unidimensional representation of the four 

subdomains by having inter-subdomain correlations of 1, while Group 2 possessed inter-

subdomain correlations that ranged from weak to moderate (using Cohen’s, 1968 

criteria). To accomplish this, ability estimates (thetas) were sampled from a multivariate 

standard normal distribution for each simulee as: 

𝛉~𝑁(𝝁, 𝚺),                                                      (60) 

where 𝛉 is a 4 x 1 vector of ability estimates, 𝝁 is a 4 x 1 vector of zeros, and 𝚺 is a 4 x 4 

covariance matrix with the diagonal components equal to 1 and the off-diagonal 
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components equal to the inter-subdomain correlations. Item response probabilities were 

then generated from a four-factor measurement model: 

𝐱 = 𝚲𝐱𝛏 + 𝛅,                                                      (61) 

where 𝐱 is an n x 4 matrix of manifest variables, 𝚲𝐱 is an n x 4 matrix of lambda 

coefficients, which are the magnitudes of the expected change in the observed variable 

for a one unit change in the latent variable, 𝛏 is a 4 x 4 variance-covariance matrix for the 

latent scores, and 𝛅 is an n x 4 matrix of delta coefficients, which are errors of 

measurement for the manifest variables and are assumed to be uncorrelated.  

 As a dichotomous factor analysis model can be viewed as a reparameterization of 

an IRT model (Kamata & Bauer, 2008), IRT parameters from a three-parameter logistic 

(3PL) model obtained from the Massachusetts Comprehensive Assessment System 

(MCAS; Massachusetts Department of Education, 2013) were transformed to obtain the 

respective slope and intercept parameters:  

𝑎𝑖 =
𝜆𝑖

√1−𝜆𝑖
2
                                                         (62) 

𝑏𝑖 =
𝜏𝑖

√1−𝜆𝑖
2
                                                         (63) 

(across models the pseudo-guessing parameter is equivalent). The choice of the 

generating 3PL model was based on its popularity in the field of educational assessment, 

while the choice of employing item parameters from an operational testing program was 

made to ensure that the simulation reflected realistic conditions. Data generation was 

conducted separately for the two groups of examinees by differing the theta covariance 

matrix within the simdata function in the R MIRT package (Chalmers, 2014). To control 

for sampling error, 25 datasets were generated for each group in every condition. This 
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resulted in two Ng x I matrices for each replication, where Ng is equal to the sample size 

for the respective unidimensional and multidimensional simulee groups and I is the total 

number of items. Upon obtaining both matrices, they were combined to create one matrix 

in R (R Core Team, 2014) for identifying outliers that deviate from the unidimensional 

model and assessing subscore added value. 

3.2.2 Degree of Masking Effects when Assessing Subscore Added Value  

To assess the degree of masking subscore added value when various proportions 

of a sample possess multidimensional data, Haberman’s (2008) procedure was applied to 

the total sample for diagnostic purposes. For descriptive purposes, subdomain inter-

correlations, total reliability, subdomain internal consistency reliability, as well as 

PRMSES and PRMSEX values were reported as an average across all subdomains and 

replications. As mentioned earlier, if PRMSEX > PRMSES when a proportion of the 

sample possesses multidimensional subdomain scores, there is evidence to both 

demonstrate masking effects as well as to point towards the need to assess individual 

model fit.   

3.2.3 Assessment of Aberrant Score Profiles and Patterns at the Individual-Level 

 As previous research has demonstrated that subdomain inter-correlations are often 

very high when evaluating subscore added value for the total sample (Sinharay, 2010), 

the objective of this study was to identify unobservable subgroups that differ in the 

underlying dimensionality of the assessment administered. Such an approach may allow 

for the distinction of examinees based on whether a unidimensional model best fits the 

observed item covariances or whether a multidimensional model3 is a better 

                                                           
3 For the purposes of this study, once identifying simulees with poor fit to a unidimensional model, 

differentiation between multidimensional models was not of concern.  



 
 

64 
 

representation. To identify these unobservable groups, indices that assess deviation from 

an average subdomain vector or score pattern were implemented. Within the literature, 

person-level model fit indices have been approached from two major frameworks: 1) 

identification of multivariate outlier cases and 2) person-fit indices (both parametric and 

non-parametric).  

3.2.3.1 Identification of Multivariate Outlier Cases 

An outlier or an observation that differs markedly from other observations within 

a data sample can adversely lead to model misspecification, biased parameter estimation, 

and incorrect results (Ben-Gal, 2005). Although outliers are most often viewed as error 

due to clerical mistakes, intentional or motivated mis-reporting, sampling, or faulty 

distributional assumptions, they may also serve as observations that carry important 

information or lead to further inquiry (Osborne & Overbay, 2004). One of the most 

popular methods for identifying observations that are located far from the center of the 

data distribution (multivariate outliers) is Mahalanobis Distance, which is computed as: 

𝑀𝑖 = (∑ (𝑥𝑗 − 𝑥̅𝑛)
𝑇

𝑉𝑛
−1(𝑥𝑗 − 𝑥̅𝑛)𝑛

𝑗=1 )
1/2

,                                (65) 

where n is equal to the number of observations, 𝑥𝑗 is a vector of data points for individual 

j, 𝑥̅𝑛 is the sample mean vector, and  

𝑉𝑛 =
1

𝑛−1
∑ (𝑥𝑗 − 𝑥̅𝑛)(𝑥𝑗 − 𝑥̅𝑛)

𝑇
.𝑛

𝑗=1                                     (66) 

As an inherent assumption of this test is multivariate normality, cases with large 𝑀𝑖 

values can be classified as outliers based on some nominal error rate α from a chi-square 

distribution.  

One of the major issues of using Mahalanobis Distance as a criterion for 

identifying multivariate outliers is that it is susceptible to both masking and swamping 
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effects. Masking effects occur when the mean and covariance estimates are skewed 

toward a group of outlying observations, which makes the distance between the outlying 

observations and the mean small. In contrast, swamping effects occur when non-outlier 

observations are made to look like outliers by a group of outlying observations skewing 

the mean and covariance estimates toward the non-outlying observations. As a result, the 

mean and covariance estimates are clearly biased and can lead to Type I errors and/or low 

power (Pek & MacCallum, 2011). To overcome this, researchers have proposed a number 

of robust estimates of multivariate location and scatter (Ben-Gal, 2005). As an example, 

Hadi (1992) proposed replacing the mean with median and computing the covariance 

matrix for a subset of observations with the smallest Mahalanobis Distances. Caussinus 

and Roiz (1990) proposed a robust covariance matrix estimator by weighting 

observations according to their distance from the centroid. However, of these robust 

estimators, the most popular used in practice is the minimum covariance determinant 

(MCD) procedure proposed by Rousseeuw (1984). The objective of the MCD procedure 

is to compute a mean and covariance matrix based on h (h<N) cases that minimize the 

determinant of the covariance matrix (Hardin & Rocke, 2004). As the MCD method 

consists of an iterative process, Rousseeuw and Van Driessen (1999) developed an 

algorithm that improves the speed of computation making it attractive for operational use. 

Upon computing the mean covariance matrix using the h cases, Mahalanobis Distance 

can be calculated for each examinee.   

For the purpose of this study, cases that depart from unidimensionality were 

evaluated using the robust Mahalanobis (with MCD estimator) Distance measure. 

However, instead of evaluating outliers by inputting responses separately for all 
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dichotomous items, raw subdomain scores were computed and evaluated. This was done 

for two reasons. First, with non-normal data, such as that with dichotomous independent 

variables, the Mahalanobis Distance measure can exhibit odd behavior. As an example, 

greater weight is given to variables with probabilities near zero or one than to variables 

with probabilities closer to one half (Rosenbaum, 2009). Secondly, if the inter-subdomain 

correlations were near 1 for the majority of the sample, one would expect to see a 

relatively flat mean score profile across subdomains. However, for cases that possess a 

certain degree of multidimensionality, one would expect to see a deviation from the flat 

score profile, which if great enough, may be detected as an outlier. Computation of the 

MCD mean and covariance matrix was conducted using the robust package in R (Wang 

et al., 2014). Statistical significance of the Mahalanobis Distance measure was based on a 

chi-square distribution with 4 degrees of freedom at an alpha-level of 0.05 (critical value 

= 9.488).  

3.2.3.2 Person-Fit Indices  

The study of examinee-level item score patterns has long been a tradition in 

evaluating measurement inaccuracy. Such an approach is referred to either as 

appropriateness measurement or person fit methods, which consist of statistical 

procedures for assessing the misfit of an individual’s test performance to other item-score 

patterns or an IRT model (Meijer & Sijtsma, 2001). Detection of an atypical person-fit 

score indicates that the examinee’s score pattern cannot be adequately described with the 

chosen model (Tendeiro & Meijer, 2014). The assessment of person-fit has largely been 

developed for two types of procedures: 1) non-parametric and 2) parametric (IRT). In 

general, non-parametric procedures evaluate person-fit based solely on observed scored 
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responses, while parametric approaches define fit based on the distance between an 

individual score pattern and the estimated response pattern predicted by an IRT model 

given estimated parameters.  

In a review of person-fit indices, Karabatsos (2003) identified 11 non-parametric 

and 25 IRT-based person-fit statistics (for a review refer to Meijer & Sijtsma, 2001). 

Although numerous person-fit procedures have been developed, the lz person-fit statistic 

developed by Drasgow, Levine, and Williams (1985) is one of the most popular methods 

used in practice; however, research has demonstrated that it performs poorly in detecting 

a number of different aberrant behaviors (e.g., Karabatsos, 2003; Tendeiro & Meijer, 

2014). In general, a number of studies have found non-parametric procedures to 

outperform their parametric counterparts. As an example, in comparing cheaters, creative 

responders, guessing, careless-responding, and random-responding, Karabatsos (2003) 

found that four of the five best performing person-fit indices were non-parametric. Of the 

non-parametric procedures, the best index across multiple simulation studies has been the 

HT index first proposed by Sijtsma in 1986 (Karabatsos, 2003; Sijtsma & Meijer, 1992; 

Tendeiro & Meijer, 2014). 

 Sijtsma’s (1986) HT index identifies examinees that do not comply with the 

Guttman model, which is a simple model to predict item response patterns based on 

knowledge of an examinee’s total score. This is accomplished by ordering dichotomous 

items in order of increasing difficulty and assuming that all items are cumulative and 

unidimensional (Kronenfeld, 1972). According to a perfect Guttman scale, an examinee 

with a score of 10 out of 20 will have correctly answered the first 10 questions and 
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incorrectly answered the latter 10 questions. Based on this premise, the formula for the 

HT index is as follows: 

𝐻𝑇 =
∑ 𝜎𝑎𝑏𝑎≠𝑏

∑ 𝜎𝑎𝑏
𝑚𝑎𝑥

𝑎≠𝑏
,                                                     (67) 

where ∑ 𝜎𝑎𝑏𝑎≠𝑏  is the sum of the observed response pattern covariances of all examinees 

a and b and ∑ 𝜎𝑎𝑏
𝑚𝑎𝑥

𝑎≠𝑏  is the maximum covariance of the observed response pattern for 

all examinees a and b. The covariance of two examinees’ response patterns is given as: 

𝜎𝑎𝑏 = 𝛽𝑎𝑏 − 𝛽𝑎𝛽𝑏,                                                  (68) 

where 𝛽𝑎𝑏 is the proportion of items correctly answered by examinees a and b, and 𝛽𝑎 

and 𝛽𝑏 is the proportion of items correctly answered by examinee a and b, respectively, 

while the maximum covariance between two response vectors is  

𝜎𝑎𝑏
𝑚𝑎𝑥 = 𝛽𝑎(1 − 𝛽𝑏).                                                (69)  

The HT index ranges from -1 to 1 with a positive value for examinee a indicating an 

observed response vector that is similar to all other examinees in the dataset, and a 

negative value indicating that examinee a’s response vector is dissimilar or aberrant.  

Computation of the HT index was conducted using the PerFit package in R 

(Tendeiro, 2014). Although Karabatsos (2003) proposed a critical value of .22 for 

identifying aberrant responses using the HT index, Linacre (2012) suggested that such a 

recommendation is not appropriate for all contexts and proposed the need for further 

simulation studies. To this end, pilot analyses were conducted for three critical values 

(<0, ≤.025, and ≤.05) and were evaluated in terms of Type I error and power. Results of 

the pilot analyses demonstrated superior Type I error and power for the <0 critical value 
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and thus, was the critical value employed for identifying aberrant responses using the HT 

index in the full-scale study4.   

3.2.4 Added Value Evaluation by Outlier Classification 

Upon assessing aberrant responses, data were separated into two groups for which 

data were or were not flagged by the respective procedure under study (either 

Mahalanobis or HT). This allowed for the assessment of subscore added value invariance 

by comparing PRMSEX and PRMSES values across groups (simulees that had adequate 

fit to the unidimensional model and those that did not) using Haberman’s (2008) 

procedure described in Section 2.5.1.1. PRMSEX and PRMSES values were reported for 

outlier observations as an average across all subdomains and replications and were 

reported separately for each method. It should be noted that subscore added value 

invariance is largely dependent on both the adequacy of the procedures for identifying 

aberrant responses as well as the independent variables examined as described below. 

3.2.5 Independent Variables 

In this study, three independent variables were manipulated: 1) proportion of 

multidimensionality, 2) degree of multidimensionality, and 3) subdomain test length. 

Across all conditions, the overall number of simulees was held constant at 10,000. The 

choice of the overall sample size was made to reflect the number of examinees within a 

grade-level generally observed at the state-level. To assess the impact of sample size on 

both identification of ill-fitting simulees as well as subscore added value, three different 

proportions of multidimensionality were simulated from the overall sample size of 

10,000: 0%, 10%, 20% and 30%. Simulating 0% multidimensional profiles in the sample 

                                                           
4 Pilot study results related to the 𝐻𝑇  index are available upon request.  
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was done for the sole purpose of evaluating Type I error for each method. The remaining 

proportions were chosen as they each reflect a minority of simulees with 

multidimensional score profiles, which may be masked in either overall assessments of 

subscore added value. Therefore, it is of interest to see whether these cases can be 

identified as ill-fitting and whether their identification will lead to subscore added value 

when using Haberman’s (2008) procedure. If cases are identified correctly, sample size 

should not have an impact on the stability of added value inferences as a 10% proportion 

of multidimensionality would equal 1,000 simulees. As noted earlier, Sinharay and 

Haberman (2014) only found large standard errors with sample sizes less than 150.  

The next independent variable examined was degree of multidimensionality 

(inter-subdomain correlations), which possessed three levels: 1) 0.3, 2) 0.5, and 3) 0.7. 

More specifically, across all four subdomains the inter-subdomain correlations were held 

constant to either 0.3, 0.5, or 0.7. The smallest correlation of 0.3 was chosen to represent 

the most ideal situation of multidimensionality where the subdomains have minimal 

relationships. Although the inter-subdomain correlation of 0.5 is only slightly stronger, 

such subdomain correlations were observed in an English language assessment for 

various native language groups by Sinharay and Haberman (2014). Lastly, a subdomain 

inter-correlation of 0.7 was examined. Of the three levels, this correlation was the 

strongest and has been shown by Sinharay (2010) to have added value only under certain 

conditions. In terms of identification of poor model fit at the individual-level, it is clear 

that the degree of multidimensionality will play a large role on power. That is, greater 

departures from unidimensionality were expected to increase the power of identifying 
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cases that have multidimensional profiles, while correlations that approach 1 may 

decrease such power.  

Although subdomain test lengths were not expected to have as large of an impact 

on the power of identifying ill-fitting simulees, it was expected to play an important role 

on the assessment of subscore added value. More specifically, previous research has 

demonstrated that added value is rare unless a subdomain is comprised of at least 20 

items, due largely to the estimation of CTT reliability (Sinharay, 2010). Although 

previous research has shown that augmentation procedures can improve reliability for 

subdomains comprised of a small number of items, it does so at the cost of losing 

subdomain distinctiveness (Skorupski & Carvajal, 2010). As a result, this study examined 

the following three subdomain test lengths: 10, 25, and 50 items. More specifically, the 

subdomain test lengths of the four subdomains were held constant across the three levels 

listed above, which means that the total test lengths were equal to 40, 100, or 200 items, 

respectively. In an evaluation of operational tests, Sinharay (2010) and Sinharay and 

Haberman (2014) found that subdomain test lengths can range from approximately 10 to 

70 items. As a result, all of the subdomain test lengths chosen for this study are well 

within what is to be expected in operational tests.   

To summarize, the following independent variables and levels were examined: 

 Proportion of multidimensionality: 10%, 20%, and 30% 

 Degree of multidimensionality (inter-subdomain correlations): 0.3, 0.5, and 0.7 

 Subdomain test length: 10, 25, and 50 items 
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Fully crossed, this produces a 3 x 3 x 3 design for a total of 27 conditions, while an 

additional three conditions were added to assess Type I error. All conditions were 

examined across both the Mahalanobis Distance and HT measures.  

3.2.6 Dependent Variables 

The evaluation criteria for this simulation study can be broken into two 

categories: 1) adequacy of procedures for flagging aberrant responses and 2) recovery of 

subscore added value classifications. More specifically, the adequacy of assessing 

individual model fit was assessed in terms of Type I error and power. Furthermore, the 

impact of these flagging procedures on subscore added value invariance were examined 

via recovery of the group descriptive statistics (reliability, and inter-subdomain 

correlations) and subscore added value classifications compared to the known values of 

the generating data.  

3.2.6.1 Type I Error 

Type I error was defined as the incorrect identification of poor unidimensional 

model fit for an individual that knowingly possesses adequate model fit. For each of the 

methods applied, the proportion of simulees across replications incorrectly flagged as 

possessing poor model fit was reported. It was expected that Type I error rates would not 

exceed a nominal alpha level of .05. 

3.2.6.2 Power  

 Power was defined as the proportion of true positives at a nominal alpha-level of 

.05. For each condition, the percentage of simulees correctly identified as possessing ill-

fitting data were reported. An arbitrary criterion for adequate power was set at 80%. 
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3.2.6.3 Recovery of Subscore Added Value Classifications 

  Although evaluation of Type I error and power provide a basis for judging the 

adequacy of the flagging procedures, they do not provide a basis for judging the overall 

impact of misclassification on practical decisions related to inferences concerning 

subscore added value. As a result, recovery of reliability, inter-subdomain correlations, 

and PRMSE values were evaluated. Recovery was operationalized in terms of bias, which 

was simply defined as the difference between the estimated and known parameters for 

group g. It provides a measure of systematic error in estimation, and was computed as 

follows: 

bias =
∑ (Xgr−E(Xg))100

r=1

r
,                                               (71) 

where Xr is a descriptive statistic for group g on replication r and E(Xg) is the expected 

descriptive statistic for group g.  

3.3 Application of Aberrant Identification Methods to Real Data  

 As the simulated aspect of this study produced data that were most ideal for 

evaluating individual-level model fit (e.g., large number of items, multivariate normality, 

well discriminating items, and only two groups [based on unidimensional and 

multidimensional correlated-traits models]), it was important to apply the procedures 

proposed in this study to real data for comparison. For this purpose, data were obtained 

from 8,803 examinees administered a high-stakes dichotomous item test. This exam was 

comprised of four subdomains ranging in length from 8 to 16 items (47 total items), and 

was found to possess adequate total score internal consistency reliability (α = .91).  

In the simulated data, individuals classified as aberrant were assumed to be 

multidimensional as the majority of generated data came from a unidimensional model. 
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To support the same assumption, it was necessary to assess the test dimensionality of the 

total sample from the applied data. To this end, confirmatory factor analysis was applied 

to evaluate subdomain distinctiveness. More specifically, two competing models were 

evaluated: (a) unidimensional and (b) correlated-traits factor structures. The 

unidimensional model consisted of all items loading onto one latent variable, while the 

correlated-traits model consisted of a number of latent variables conceptualized as the 

subdomains. For the latter model, each subdomain was indicated by the items specified in 

the test blueprint, and all latent variables were correlated. All models were standardized 

by setting the latent variable residual variances to 1. Model fit was evaluated based on the 

following fit indices: comparative fit index (CFI), Tucker-Lewis Index (TLI), and root 

mean square error of approximation (RMSEA). In this analysis, adequate model fit was 

indicated by CFI and TLI values >.95, as well as RMSEA estimates <.06 (Hu & Bentler, 

1999). Although these fit indices were originally suggested for use with continuous 

variables, they have also been found to be accurate with categorical variables (Yu and 

Muthén, 2001).  

As the unidimensional model was nested within the correlated-traits model, direct 

comparisons were made between models to examine which model provided the best fit to 

the sample data by evaluating ∆CFI. The ∆CFI index was chosen over the traditional chi-

square difference test as the latter method has been suggested to be highly sensitive to 

sample size, while ∆CFI has been demonstrated in simulation studies to provide stable 

performance with various conditions, such as sample size, amount of invariance, number 

of factors, and number of items (Meade, Johnson, & Braddy, 2008). Based on simulation 

analyses, Cheung and Rensvold (2002) recommended that a ∆CFI≤.01 supports the 
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invariance hypothesis. That is, if the ∆CFI≤.01, the two competing models would be 

statistically equivalent. If this were the case, the most parsimonious model was chosen as 

the best representation of the sample data. 

Upon ensuring that the total sample data adhered to a unidimensional model, the 

robust Mahalanobis Distance measure and the HT person-fit statistic were applied to the 

high-stakes testing data. Specifically, raw subdomain scores were computed for each 

subscore to analyze the Mahalanobis Distance measure, while dichotomous item 

responses were evaluated to detect atypical score patterns using the HT person-fit statistic. 

Each of these individual model fit procedures were conducted as described in sections 

3.2.3.1-3.2.3.3, respectively. Descriptive statistics (mean, standard deviation, internal 

consistency, inter-subdomain correlations, and PRMSE values) were then computed 

separately for examinees identified as possessing aberrant and non-aberrant response 

patterns by flagging procedure. This allowed for two separate analyses of score profiles 

and subscore added value invariance. A score profile analysis allows for the plotting of 

subdomain scores to evaluate three types of information: level, dispersion, and shape. 

Level and dispersion of a score profile is the unweighted average and standard deviation 

of mean subdomain scores, respectively, while the shape of a score profile can be defined 

as the rank ordering of subdomain means. All three types of information were 

implemented in this analysis to provide a gauge of the kinds of scores identified as 

aberrant by the two detection procedures. Such an analysis was important as there was no 

formal understanding of the characteristics of the “true” outlier profiles. Upon conducting 

the score profile analysis, subscore added value invariance was evaluated separately for 

aberrant and non-aberrant examinees by procedure. Taken together, these two analyses 
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allowed for the assessment of: (a) whether there were groups of examinees with 

multidimensional data that were masked and (b) whether the flagging procedures 

functioned similarly to the simulated conditions.  
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CHAPTER 4 

RESULTS 

4.1 Overview of Results Section 

 This chapter is comprised of two sections. The first section presents results from 

the simulation analyses, while the second section reports results of the application of the 

aberrant response detection procedures to a real dataset. Section one was broken down 

into three sub-sections that were based on the research questions outlined in the 

introduction and methodology chapters. In particular, the first sub-section describes the 

degree of masking effects on a minority percentage of simulees with multidimensional 

subdomains when analyzing subscore added value invariance for the total sample. The 

second sub-section describes Type I error and power rates for two aberrant response 

detection procedures (HT and Mahalanobis Distance indices). The last sub-section reports 

results on the recovery of descriptive statistics and subscore added value classifications 

for the HT and Mahalanobis Distance indices. Upon presenting results of the simulation 

analyses, subscore added value invariance using both the HT and Mahalanobis Distance 

indices was evaluated for a large-scale applied dataset. Results from this analysis are 

provided in the second section of this chapter.  

4.2 Degree of Masking Effects when Assessing Subscore Added Value 

 One of the objectives of this study was to evaluate whether a minority of 

examinees with multidimensional score profiles can be masked when assessing subscore 

added value for the total sample via Haberman’s (2008) method.  

4.2.1 Conditions for Added Value of Multidimensional Generated Data 

  Before describing the masking effects related to subscore added value analyses 

using Haberman’s (2008) method, it is important to first discuss the rate of added value 
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that would be expected solely for multidimensional score profiles based on the generating 

conditions (subdomain test length and inter-subdomain correlations). Such analyses are 

particularly important for two reasons: a) minimal simulation research has been 

conducted to provide recommendations on the necessary conditions for obtaining 

subscore added value, and b) a lack of added value for the generated multidimensional 

data may serve as a confound when evaluating masking effects.  

Results demonstrated that added value was found to be lacking for a number of 

multidimensional conditions, particularly when the subdomain test length was equal to 10 

items. One reason for the lack of subscore added value with this subdomain test length 

was due to a large underestimation of multidimensional subscore correlations and clearly, 

a lower reliability due to the small number of subdomain items. Within the conditions 

with a subdomain test length of 25 items, subscore added value was obtained at a rate of 

100% only when the generating subdomain inter-correlations were equal to .30; however, 

that rate dropped to 61% and 0% with inter-subdomain correlations of .50 and .70, 

respectively. In general, subscore added value was obtained at much higher rates when 

the subdomain test length was equal to 50 items. As an example, added value for the 

generating multidimensional data was obtained 100% of the time across replications 

when inter-subdomain correlations were equal to .30 and .50; however, added value was 

obtained for 59% of replications with generating correlations of .70 (Table 1).    

4.2.2 Masking Effects for Minority Percentages of Multidimensional Scores 

  As not all generating conditions were found to provide added value, only those 

conditions that possessed 100% added value across replications for the generated 

multidimensional data were evaluated for masking effects. As mentioned, only three 
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conditions met this criterion: a) subdomain test lengths of 25 items and inter-subdomain 

correlations of .30, b) subdomain test lengths of 50 items and inter-subdomain 

correlations of .30, and c) subdomain test lengths of 50 items and inter-subdomain 

correlations of .50.   

Across both subdomain test lengths of 25 and 50 items, there was 0% added value 

when the proportion of multidimensional score profiles comprised 10% of the total 

sample, regardless of inter-subdomain correlations. Although the reliability and 

estimation of inter-subdomain correlations were improved for a subdomain test length of 

50 items, the percentage of added value for a proportion of 20% multidimensional score 

profiles was at most 1% for the condition with subdomain test length of 50 items and 

inter-subdomain correlations of .30. In fact, the percentage of replications with added 

value for the total sample was 0% for a subdomain test length of 50 items and inter-

subdomain correlations of .50, regardless of the percentage of multidimensional cases in 

the total sample. Interestingly, the condition with the highest percentage of replications 

with added value (3%) possessed a subdomain test length of 25 items, 30% 

multidimensional scores in the total sample, and subdomain inter-correlations of .30; 

however, by reducing the percentage of multidimensional data in the sample to 20%, the 

percentage of replications with added value was 0% (Table 2). 

The results described in this section demonstrated that a minority of examinees 

with multidimensional score profiles can be masked when assessing subscore added 

value for the total sample via Haberman’s (2008) method. Specifically, up to 30% of 

examinees within a sample can possess multidimensional data with inter-subdomain 

correlations as low as .30 without being identified. This finding indicates that assessing 
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added value for the total sample may lead to excluding examinees that may possess data 

that would allow for reporting valid and reliable subscores. To this end, it is necessary to 

accurately identify such examinees to ultimately assess subscore added value invariance.  

4.3 Type I Error and Power by Aberrant Response Identification Procedure 

 This study evaluated two procedures for assessing aberrant responses from an 

underlying unidimensional test structure: 1) Mahalanobis Distance and 2) HT person-fit. 

The adequacy of each procedure was judged on adequate Type I error and power rates, 

which were defined as .05 and .80, respectively, across various conditions, such as 

subdomain test length, percentage of multidimensional scores in the sample data, and 

inter-subdomain correlations. Furthermore, the practical implications of employing each 

aberrant response identification procedure on conclusions related to subscore added value 

were evaluated by assessing bias of descriptive statistics and subscore added value 

classifications for aberrant responders when compared to generating data. The findings 

from these analyses are presented below. 

4.3.1 Type I Error 

 Type I error was defined as the incorrect classification of unidimensional scores 

as aberrant responses solely for data generated via a unidimensional model. Results 

demonstrated that across aberrant response identification procedures, Type I error rates 

were found to differ. Specifically, the HT index was found to be dependent on subdomain 

test length with Type I error rates decreasing as the number of items within each 

subdomain increased. As an example, the highest Type I error rate observed for this index 

was 2% when the subdomain test length was equal to 10 items. Although below the 

criterion of 5%, Type I error rates decreased to 0.2% and 0.02% as the subdomain test 
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lengths increased to 25 and 50 items, respectively. In contrast, the Type I error rates for 

the Mahalanobis Distance index were found to be independent of subdomain test length 

as Type I error was held constant at 5% when the number of items within each 

subdomain was equal to 10, 25, and 50 items. Overall, these results suggest that the 

indices employed did not classify unidimensional cases beyond the a-priori threshold of 

5% (Table 3). 

4.3.2 Power 

 Power was defined as the correct classification of scores generated from a 

multidimensional model as aberrant responses. Results demonstrated that across aberrant 

response identification procedures, power rates strongly favored the HT index. As an 

example, when subdomain test length was equal to 50 items, power rates of 1.0 were 

obtained regardless of inter-subdomain correlations or proportion of multidimensionality 

(e.g., Table 5). Similarly, conditions with subdomain test lengths of 25 items all 

possessed power rates of .99. When subdomain test length was 10 items, power rates of 

.99 were obtained for all inter-subdomain correlations and proportions of 

multidimensionality, except for conditions with 30% multidimensionality. Specifically, a 

power rate of .97 was obtained for an inter-subdomain correlation of .70 (Table 6), while 

power rates of .98 were observed when inter-subdomain correlations were .30 and .50.      

 In contrast to the HT index, power rates were of greater variability for 

Mahalanobis Distance, which illustrated three general trends. First, power increased as 

subdomain test length increased. As an example, power rates increased by at least 10% 

for each respective condition (proportion of multidimensionality and inter-subdomain 

correlations) when subdomain test length increased by one level. In increasing subdomain 
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test length by 40 items, power rates increased by as much as 33%. The second trend 

observed was that power decreased as the proportion of multidimensionality increased. 

For instance, power decreased when the proportion of multidimensionality went from 

10% to 30% by as little as 9% and as much as 15%. This impact was greatest and least 

variable when the subdomain test lengths were 10 and 50 items, respectively.  

As expected, the last trend illustrated was that power decreased as inter-

subdomain correlations increased. The most extreme changes in power were observed 

when increasing inter-subdomain correlations from .50 to .70. As an example, the largest 

decrease in power (12%) when increasing subdomain correlations by .20 was obtained 

for a subdomain test length of 50 items and a proportion of multidimensionality of 20%. 

In the same condition when increasing subdomain correlations from .30 to .70, power 

decreased by 21%. As a result of the interaction of these three trends, it is no surprise that 

the lowest power rate (13%) was obtained with a subdomain test length of 10, 30% 

multidimensionality, and inter-subdomain correlations of .70, while the highest power 

rate (61%) was obtained with a subdomain test length of 50 items (Table 7), 10% 

multidimensionality, and .30 inter-subdomain correlations (Table 8). 

4.3.3 Recovery of Subscore Added Value Classifications 

Although evaluating Type I error and power is important from a methodological 

standpoint, the practical consequences of employing each procedure must be viewed in 

the context of making decisions regarding subscore added value. To this end, bias was 

assessed in terms of descriptive statistics (mean, standard deviation, internal consistency 

reliability, and inter-subdomain correlations) and subscore added value classifications. As 

the HT index was found to possess nearly perfect power and extremely low Type I error 
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rates, it was expected that minimal bias of added value classifications would be observed. 

This was the case for nearly all of the conditions, except for the conditions generated with 

subdomain test lengths of 25 items and inter-subdomain correlations of .50. In particular, 

under these conditions, an under-classification of subscore added value was observed for 

the HT index with under-classification occurring by as much as 18% for the condition 

with 10% multidimensionality when compared to the generated data (Table 9). Upon 

closer examination of this condition, the average total score and variability between the 

generated (M = 49.67, SD = 11.13) and aberrant cases identified using the HT index (M = 

49.52, SD = 11.37) were nearly identical (d = .01), while subdomain internal consistency 

reliability was also identical (α = .68). The only difference observed was slightly higher 

average inter-subdomain correlations for the HT cases (r = .36) when compared to the 

generated data (r = .34), which increased the PRMSEX values for the HT cases to .65 

when compared to .63 for the generated cases. Although slight, this difference appeared 

to have a large impact on subscore added value classifications as the PRMSES (α) values 

were very similar to the PRMSEX values. However, besides these conditions, under-

classification was minimal and the percentage of added value was nearly identical to the 

generated data for the HT cases.  

In contrast to the HT index, the Mahalanobis Distance measure was found to 

classify multidimensional cases as aberrant across conditions. To examine why this 

occurred, bias in descriptive statistics (mean, standard deviation, reliability, and 

correlation values) between the generated data and the cases identified as aberrant using 

the Mahalanobis Distance measure was evaluated. In doing so, the group of cases 

identified as aberrant by the Mahalanobis Distance measure were found to consistently 
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score lower, be more variable, possess higher internal consistency reliability (due to the 

increased score heterogeneity), and have weaker observed inter-subdomain correlations 

when compared to the generated data (Table 10). However, bias of the descriptive 

statistics was impacted by the generating independent variables in a number of ways.  

For one, mean score bias was found to be impacted by inter-subdomain 

correlations. That is, the bias between the mean scores of the aberrant cases identified 

using Mahalanobis Distance and the generated multidimensional data increased as the 

inter-subdomain correlations increased. As an example, for a subdomain test length of 10 

items and 10% multidimensionality in the total sample, the effect size difference between 

the identified aberrant cases and the generated data increased from .15 SD for an inter-

subdomain correlation of .30 (N = 3179) to .84 SD for an inter-subdomain correlation of 

.70 (N = 2393). In contrast, the bias of score variability (standard deviations) and in turn, 

internal consistency reliability was found to be independent of the inter-subdomain 

correlations as negligible differences were observed in a non-consistent pattern across 

levels. Instead, the biggest impact on bias of score variability and internal consistency 

was due to subdomain test length as bias decreased when test length increased. As an 

example, across all conditions with a subdomain test length of 10 items, aberrant cases 

identified using the Mahalanobis Distance measure possessed higher internal consistency 

when compared to the generated data by an average of .24 points on a scale from 0 to 1. 

This average bias decreased for the subdomain test lengths of 25 and 50 items to only .09 

and .03, respectively.  

Similarly, conditions with subdomain test lengths of 10 possessed on average 

greater bias in observed inter-subdomain correlations; however, this finding was 



 
 

85 
 

confounded by the generating inter-subdomain correlations and proportion of 

multidimensionality. Specifically, bias in average observed inter-subdomain correlations 

was found to consistently increase as both the generating inter-subdomain correlations 

and proportion of multidimensionality increased. As these independent variables 

interacted with subdomain test length, it is of no surprise that the condition with the 

largest bias in observed inter-subdomain correlations (.28 on a scale from -1 to 1) was 

detected for a subdomain test length of 10 items, generated inter-subdomain correlations 

of .70, and 30% multidimensionality in the total sample. It was of no coincidence that this 

same condition produced the lowest power rate (13%) for the Mahalanobis Distance 

measure when compared to all other conditions in the simulation. Similarly, the condition 

with the highest power rate (61%; subdomain test length of 50 items, generated inter-

subdomain correlations of .30, and proportion of multidimensionality of 30%) produced 

the lowest bias in average observed inter-subdomain correlations (.01; Table 10). 

Taken together, these results suggest that the HT index identified cases generated 

from a multidimensional model with nearly perfect accuracy. In contrast, the 

Mahalanobis Distance measure was far less successful; however, the cases identified as 

aberrant using this method were found to have greater variability between subdomain 

scores, increased reliability, and lower observed subdomain correlations. To highlight 

this finding, the reader is referred to Figure 1 where one sees that the multidimensional 

cases not identified by the Mahalanobis Distance measure as aberrant from the 

unidimensional model possessed little variability between subdomain scores, which as 

demonstrated lowered internal consistency reliability and increased inter-subdomain 

correlations. In contrast, Figure 2 shows the extreme variation of 10 random cases 
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identified as aberrant using the Mahalanobis Distance measure, which strongly reflects 

the multidimensionality of the generating data.  

One may interpret this variation as being largely due to random error. To evaluate 

this plausible interpretation, the mean score profile variability of aberrant cases identified 

by the Mahalanobis Distance measure was compared to the variability of the non-outlier 

cases in relation to the standard errors of measurement (SEM) for both groups. As can be 

seen in Figure 3, two general trends were illustrated: a) the mean SEMs for both the 

outlier and non-outlier cases were nearly identical across subdomain test length 

conditions, and b) the difference between the mean score profile variability and the SEMs 

of both groups increased as the subdomain test lengths increased. Clearly, these trends 

suggested that as the tests became more reliable (i.e., the subdomain test lengths 

increased), the observed score profile variability was more than would be expected by 

random error. In particular, the most telling aspect of Figure 3 was that even when the 

subdomains were at their most unreliable (i.e., 10 items per subdomain), the difference 

between the SEM and mean score profile variability for the outlier group was still larger 

than that of the non-outliers. Overall, these findings suggest that the Mahalanobis 

Distance measure only identified cases with relatively large departures from 

unidimensionality and score variability that was greater than would be expected based on 

random error.  

When examining bias related to added value classification, the Mahalanobis 

Distance measure was found to over-classify added value consistently across all 

conditions. Specifically, added value was obtained for nearly 100% of replications when 

evaluating cases identified by the Mahalanobis Distance measure even when the 
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generated multidimensional data showed no added value. Such a finding is supported by 

briefly considering how decisions regarding added value are made when employing 

Haberman’s (2008) method. That is, if PRMSES, which is equal to subdomain reliability, 

is greater than PRMSEX, which is a value based on inter-subdomain correlations as well 

as subdomain and total score reliability, one concludes that a subscore provides added 

value beyond that reported by the total score. As noted by Sinharay (2010), a subscore 

most often provides added value when there is both high internal consistency subdomain 

reliability and low inter-subdomain correlations. Therefore, it is of no surprise that the 

Mahalanobis Distance measure obtained cases that possessed subscore added value at 

rates near 100% as these cases were observed to have high variability between subscores 

(leading to high subdomain internal consistency reliability and low inter-subdomain 

correlations). This finding of added value for the Mahalanobis Distance measure was 

found to be independent of subdomain test length, inter-subdomain correlations, or 

proportion of multidimensionality in the total sample (Table 10).  

4.4 Application of Aberrant Identification Methods to Real Data  

 Although the Mahalanobis Distance measure showed some promise in simulation 

analyses, one may question: (a) whether in applied data there are minority groups of 

examinees with multidimensional data that may be masked by the unidimensionality of 

the total sample, and (b) whether the Mahalanobis Distance measure functions similarly 

in practice. To address these concerns, both the HT index and Mahalanobis Distance 

measure were applied to high-stakes testing data that were collected from a large sample. 

Based on the recommendations of Sinharay (2010), this applied dataset would have little 

probability of providing added value due to the short average subdomain test length.  
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When analyzing the total sample (N = 8,803) of the applied data, adequate model 

fit was obtained for a unidimensional model (χ2
1260 = 7579.87, p<.001, CFI = .945, TLI = 

.989, RMSEA = .024) as well as a four-factor correlated-traits model (χ2
1257 = 7292.48, 

p<.001, CFI = .947, TLI = .989, RMSEA = .023); however, the correlations of the latent 

variables from the four-factor model revealed poor discriminant validity between: 

subdomains 1 and 2 (ϕ12 = .955), subdomains 1 and 3 (ϕ13 = .972), subdomains 1 and 4  

(ϕ14 = .960), subdomains 2 and 3 (ϕ23 = .949), subdomains 2 and 4 (ϕ24 = .961), as well as 

subdomains 3 and 4 (ϕ34 = .972). A direct comparison of the two models, ∆CFI = .947-

.945 = .002, indicated that both recovered the observed covariance matrix with equal 

accuracy; however, as the inter-factor correlations were found to be extremely high, the 

unidimensional model was concluded to be the best model. As a result, it was of no 

surprise that when analyzing the total sample for added value, none of the four 

subdomains were found to be better predictors of the true subscores than the total sample 

(Table 11). Therefore, to assess if the aberrant identification procedures could identify 

distinct groups of examinees with multidimensional scores that would provide added 

value, the HT index and Mahalanobis Distance measure were applied to the same data. 

4.4.1 Profile Analysis 

 The agreement in aberrant case classifications by method is provided in Figure 4. 

Of the 8,803 examinees, the HT index identified 147 (1.67%) as aberrant, while the 

Mahalanobis Distance measure identified 579 cases (6.57%). Although the majority of 

cases were identified as non-aberrant by either procedure, there were only 22 (0.25%) 

cases that were classified as aberrant by both the HT and Mahalanobis Distances indices. 
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The score profiles for the total sample as well as the cases identified by the HT and 

Mahalanobis Distance indices are shown in Figure 5.   

An examination of the score profiles shown in Figure 5 show that the shape of the 

total sample and Mahalanobis Distance profiles are nearly identical, but they differ in that 

both the elevation (grand mean) and scatter (standard deviation) is lower for the 

Mahalanobis Distance profile. This can clearly be seen as the profiles are almost perfectly 

parallel with the Mahalanobis profile significantly shifted downwards in Figure 5. In 

contrast, the profile of the aberrant cases identified by the HT index is nearly identical to 

the total sample. In fact, the mean scores between the total sample and HT index on 

subdomains 1, 2, and 3 were observed to have overlapping scores when considering 

standard errors. The one difference observed between these two score profiles was that 

the cases identified using the HT index possessed a much higher mean score on 

subdomain 1, which clearly led to differential profile shapes (Table 12). Overall, this 

score profile analysis supports the findings from the simulated analyses by demonstrating 

that the cases identified as aberrant by the HT and Mahalanobis Distances indices are 

different in two respects: a) there is little agreement between the two procedures in 

classifying aberrant cases, and b) not surprisingly, the aberrant cases identified differed in 

elevation, scatter, and shape.  

4.4.2 Subscore Added Value Analysis 

 As the two procedures were found to identify cases with very different profiles, 

the next step was to evaluate how these cases were classified in terms of added value. In 

examining the difference in mean scores between outliers and non-outliers for the HT 

index, only one subdomain was found to have non-negligible differences as shown in 
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Figure 5. Specifically, on subdomain 1, outliers outscored their non-outlier counterparts 

by an average of .57 standard deviations (Table 13). Furthermore, as would be expected, 

data for the non-outliers (n = 8656) demonstrated very similar inter-subdomain 

correlations (r ranged from .62 to .71), subdomain reliabilities (α ranged from .65 to .74), 

total score reliability (α = .97), PRMSEX (ranged from .97 to .98) values, and conclusions 

regarding subscore added value (none of the four subdomains provided added value) to 

the total sample. Interestingly, when analyzing data for the outliers identified by the HT 

index, higher inter-subdomain correlations (r ranged from .88 to .92) and subdomain 

reliabilities (α ranged from .88 to .93) were obtained when compared to the non-aberrant 

cases. Both the increased inter-subdomain correlations and subdomain reliabilities can be 

explained as artifacts of the increased variability in the subdomain scores of the HT cases 

(Table 11). As a result of the high inter-subdomain correlations, subdomain reliability, 

and total test score reliability (.91), the total score was found to be a better predict of the 

true subscores than the observed subscores across all four subdomains.  

As no added value was found for the total sample or aberrant responders 

identified using the HT index, the Mahalanobis Distance measure was next applied. In 

evaluating mean performance differences between groups identified by Mahalanobis 

Distance, aberrant responders were found to significantly score lower across all four 

subdomains. Specifically, on average, non-outliers outscored their outlier counterparts by 

.47 to .65 standard deviations (Table 13). Similar to the simulation analyses, inter-

subdomain correlations for aberrant responders were found to be significantly lower than 

their non-aberrant counterparts. Specifically, inter-subdomain correlations ranged from 

.72 to .77 for non-aberrant responders, while outlier examinees possessed correlations 
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ranging from .07 to .30. Interestingly, subdomain reliabilities did not significantly 

increase across all subdomains for examinees classified as aberrant, which was the case 

in the simulation analyses. As an example, the subdomain reliabilities for subdomains 2 

(13 items) and 3 (16 items) were very similar to those of the non-outlier group. The 

largest difference in subdomain reliability was observed for subdomain 4 (8 items) in 

which the internal consistency reliability was equal to .79 for outliers and .63 for non-

outliers. However, unexpectedly, the subdomain reliability of subdomain 1 (11 items) 

dropped from .70 for non-outliers to .51 for outliers. One plausible reason for the 

decrease in reliability may have been due to reduced variability for aberrant responders 

(SD = 2.00) on subdomain 1 when compared to non-aberrant responders (SD = 2.53); 

however, this finding was a bit of an anomaly as the variability in subdomain scores was 

generally greater for aberrant examinees (Table 11). In addition to lower inter-subdomain 

correlations, the outlier group was also found to possess lower total test score reliability 

(α = .79) than the non-outlier group (α = .91). Taken together, this led to reduced 

PRMSEX values for subdomains 1 (.19), 2 (.44), 3 (.55), and 4 (.49). As a result, the 

outlier examinees identified by Mahalanobis Distance were found to have subscore added 

value for all subdomains.  

However, one question still remains, was the identification of these aberrant cases 

largely due to random error? To examine this question the average profile variability for 

the aberrant cases were compared to the standard errors of measurement at each 

subdomain. As is shown in Figure 6, the score profiles of the aberrant cases were 

generally more variable than would be expected based on random error, particularly for 

subdomains 2, 3, and 4. Subdomain 1 was found to possess less variability than the other 
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subdomains, which led to lower reliability (α = .51) and consequentially a higher standard 

error of measurement. As a result, before reporting all subdomain scores one should 

consider the relatively strong relationship between subdomain variability and random 

error for subdomain 1.  

Overall, the results from the applied data analysis supported the findings from the 

simulated data. For one, the real data application demonstrated that in practice there is a 

distinct group of examinees with multidimensional data that are masked when analyzing 

subscore added value for the total sample. Such a finding supports the need to identify 

individuals that deviate from a unidimensional model as their data may allow for 

reporting useful information that can pinpoint areas of learning needs. Secondly, although 

both the HT and Mahalanobis Distance measures identified examinees that differed from 

the majority of the sample due to aberrant score patterns and profiles, they identified very 

different types of examinees, which led to divergent conclusions regarding subscore 

added value. Of the two, the Mahalanobis Distance measure showed the most promise as 

it identified outliers that provided subscore added value for all subdomains due to low 

inter-subdomain correlations and increased subdomain reliability (for three of four 

subdomains). In particular, both simulated and applied data analyses demonstrated that 

the subdomain relationships were nearly random, which was to be expected as the 

aberrant cases identified each possessed differential subdomain performance on one or 

more subdomains when compared to the others. Such increased variability was most 

pronounced when the subdomain test lengths were short and as mentioned, led to 

increased subdomain reliability, which was beneficial particularly for the short 

subdomain test lengths. Taken together, these results suggest that although the 
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multidimensional group was found to only compose at most 6.57% of the total sample, on 

a large-scale, such as at the state-level, that could result in hundreds of examinees 

receiving valid and reliable diagnostic information that could improve instruction and 

learning in practice when using the Mahalanobis Distance measure. 
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Table 1 

Subscore added value for generating multidimensional data by condition  

Test Length r (outliers) r PRMSES PRMSEX % Subscore Added Value 

10 .30 .13 .45 .49 0% 

 .50 .23 .45 .64 0% 

 .70 .31 .45 .78 0% 

25 .30 .20 .67 .48 100% 

 .50 .34 .67 .63 61% 

 .70 .47 .67 .77 0% 

50 .30 .24 .80 .48 100% 

 .50 .40 .80 .63 100% 

 .70 .56 .80 .78 59% 

Note. These calculations are based on an average of four subdomains and 75 replications 

of 10,000 simulees per replication. 
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Table 2 

Subscore added value for total sample by subdomain test length, proportion of outliers, and inter-subdomain correlations 

  Inter-Subdomain Correlations  

  
rG1 = 1.00 

rG2 = .30 

rG1 = 1.00 

rG2 = .50 

rG1 = 1.00 

rG2 = .70 

Subdomain 

Test 

Length 

% 

Multidim 
PRMSES PRMSEX 

% 

Subscore 

Added 

Value 

PRMSES PRMSEX 

% 

Subscore 

Added 

Value 

PRMSES PRMSEX 

% 

Subscore 

Added 

Value 

           

10 10% .45 .97 0% .44 .96 0% .44 .99 0% 

 20% .44 .92 0% .44 .94 0% .44 .96 0% 

 30% .43 .88 0% .43 .95 0% .45 .99 1% 

25 10% .66 .95 0% .67 .97 0% .67 .98 0% 

 20% .66 .91 0% .66 .92 1% .67 .94 1% 

 30% .66 .85 3% .68 .91 1% .66 .95 0% 

50 10% .80 .95 0% .80 .96 0% .80 .98 0% 

 20% .80 .89 1% .79 .93 0% .80 .96 0% 

 30% .80 .87 1% .80 .90 0% .80 .93 2% 

Note. The PRMSE values reported are an average of the four subdomains and the highlighted cells denote the conditions that were 

evaluated as the generated multidimensional data possessed 100% added value across replications. % Multidim = the proportion of 

multidimensional cases in the total sample.
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Table 3 

Type I error rate by aberrant detection procedure 

 Aberrant Detection Procedure 

Subdomain Test Length HT Mahalanobis Distance 

10 .02 

(.98) 

.05 

(.95) 

25 <.01 

(>.99) 

.05 

(.95) 

50 <.01 

(>.99) 

.05 

(.95) 

Note. The numbers in parentheses denote the percentage of unidimensional cases 

correctly identified as non-aberrant. 

 



 
 

97 
 

Table 4 

Power rate by aberrant detection procedure 

  Aberrant Detection Procedure 

  Robust Mahalanobis Distance Measure HT Person-Fit Statistic 

  Inter-Subdomain Correlations 

Subdomain Test Length % Multidimensionality rG1 = 1.00 

rG2 = .30 

rG1 = 1.00 

rG2 = .50 

rG1 = 1.00 

rG2 = .70 

rG1 = 1.00 

rG2 = .30 

rG1 = 1.00 

rG2 = .50 

rG1 = 1.00 

rG2 = .70 

10 10% .32 

(.68) 

.26 

(.74) 

.24 

(.76) 

.99 

(.01) 

.99 

(0) 

.99 

(0) 

 20% .23 

(.77) 

.21 

(.79) 

.22 

(.78) 

.99 

(.01) 

.99 

(0) 

.99 

(0) 

 30% .17 

(.83) 

.14 

(.86) 

.13 

(.87) 

.98 

(.02) 

.98 

(0) 

.97 

(0) 

25 10% .43 

(.57) 

.39 

(.71) 

.34 

(.66) 

.99 

(.01) 

.99 

(0) 

.99 

(0) 

 20% .37 

(.63) 

.33 

(.67) 

.26 

(.74) 

.99 

(.01) 

.99 

(0) 

.99 

(0) 

 30%  .34 

(.66) 

.28 

(.72) 

.19 

(.81) 

.99 

(.01) 

.99 

(0) 

.99 

(0) 

50 10% .61 

(.39) 

.51 

(.49) 

.44 

(.56) 

1.00 

(0) 

1.00 

(0) 

1.00 

(0) 

 20% .55 

(.45) 

.47 

(.53) 

.35 

(.65) 

1.00 

(0) 

1.00 

(0) 

1.00 

(0) 

 30% .50 

(.50) 

.42 

(.58) 

.33 

(.67) 

1.00 

(0) 

1.00 

(0) 

1.00 

(0) 

Note. The numbers in parentheses denote the percentage of multidimensional cases incorrectly identified as non-aberrant (Type II 

errors).
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Table 5 

Confusion matrix for the HT condition with the highest power rate  

True Classification 
Mahalanobis Distance Classification 

Unidimensional Multidimensional 

Unidimensional 999 (99.999%) 1 (.001%) 

Multidimensional 0 (0%) 9000 (90%) 

Note. This condition is based on a subdomain test length of 50 items, an inter-subdomain 

correlation of .30, and 10% multidimensionality. Numbers in parentheses denote the 

percentage of total observations identified. 

 

 

Table 6 

Confusion matrix for the HT condition with the lowest power rate  

True Classification 
Mahalanobis Distance Classification 

Unidimensional Multidimensional 

Unidimensional 2937 (29.37%) 63 (.63%) 

Multidimensional 206 (2.06%) 6794 (67.94%) 

Note. This condition is based on a subdomain test length of 10 items, an inter-subdomain 

correlation of .70, and 30% multidimensionality. Numbers in parentheses denote the 

percentage of total observations identified. 
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Table 7 

Confusion matrix for the Mahalanobis Distance condition with the lowest power rate  

True Classification 
Mahalanobis Distance Classification 

Unidimensional Multidimensional 

Unidimensional 6,659 (66.59%) 341 (3.41%) 

Multidimensional 382 (3.82%) 2,618 (26.18%) 

Note. This condition is based on a subdomain test length of 10 items, an inter-subdomain 

correlation of .70, and 30% multidimensionality. Numbers in parentheses denote the 

percentage of total observations identified. 

 

 

Table 8 

Confusion matrix for the Mahalanobis Distance condition with the highest power rate  

True Classification 
Mahalanobis Distance Classification 

Unidimensional Multidimensional 

Unidimensional 8,554 (85.54%) 446 (4.46%) 

Multidimensional 383 (3.83%) 617 (6.17%) 

Note. This condition is based on a subdomain test length of 50 items, an inter-subdomain 

correlation of .30, and 10% multidimensionality. Numbers in parentheses denote the 

percentage of total observations identified.
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Table 9 

Bias of PRMSE values and percentage of subscore added value for outlier groups identified by individual indices   

Condition Robust Mahalanobis HT Person-Fit 

Test 

Length 

r 

(outliers) 

% 

Multidimensionality 

PRMSES PRMSEX % Subscore 

Added Value 

PRMSES PRMSEX % Subscore 

Added Value 

10 .30 10 .20 -.19 99% .04 .16 1% 

  20 .25 -.24 100% .03 .08 0% 

  30 .26 -.28 99% .01 .06 0% 

 .50 10 .23 -.32 100% .04 .11 0% 

  20 .23 -.34 100% .02 .06 0% 

  30 .27 -.38 100% .01 .04 0% 

 .70 10 .23 .45 100% .04 .06 0% 

  20 .23 -.43 96% .02 .03 0% 

  30 .26 .46 96% .01 .03 0% 

25 .30 10 .07 -.08 0% 0 .02 0% 

  20 .09 -.14 0% 0 .01 0% 

  30 .10 -.17 0% 0 .01 0% 

 .50 10 .07 -.17 45% 0 .02 -18% 

  20 .08 -.21 47% 0 .01 -5% 

  30 .09 -.23 26% .01 0 -7% 

 .70 10 .07 -.26 100% 0 0 0% 

  20 .09 -.28 99% 0 0 0% 

  30 .10 -.31 100% .01 .01 0% 

50 .30 10 .02 .01 0% 0 .01 0% 

  20 .03 -.07 0% 0 0 0% 

  30 .04 -.12 0% 0 0 0% 

 .50 10 .03 -.07 0% 0 0 0% 

  20 .03 -.12 0% 0 0 0% 

  30 .04 -.16 0% 0 0 0% 

 .70 10 .02 -.13 46% 0 0 0% 

  20 .03 -.17 36% 0 0 -1% 

  30 .03 -.17 41% 0 .01 0% 
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Table 10 

Bias of descriptive statistics for aberrant responders identified using Mahalanobis Distance    

Condition Generating Data Mahalanobis Distance Bias 
Test 

Length 

r 

(outliers) 

% 

Multidimensionality 

M SD α r M SD α r M SD α r 
10 .30 10 4.86 1.92 .46 .14 4.70 2.48 .66 .02 .16 -

.56 

-

.20 

.12 
  20 4.96 1.90 .45 .13 4.76 2.51 .69 .02 .20 -

.61 

-

.24 

.11 
  30 5.03 1.91 .45 .14 4.83 2.56 .71 -

.06 

.20 -

.65 

-

.26 

.20 
 .50 10 5.07 1.91 .45 .23 4.74 2.53 .68 .03 .33 -

.62 

-

.23 

.20 
  20 4.96 1.90 .45 .22 4.69 2.51 .68 .01 .27 -

.61 

-

.23 

.21 
  30 4.93 1.90 .45 .23 4.71 2.58 .72 -

.01 

.22 -

.68 

-

.27 

.24 
 .70 10 4.99 1.90 .45 .32 4.70 2.54 .68 .06 .29 -

.64 

-

.23 

.26 
  20 4.92 1.90 .45 .31 4.58 2.48 .68 .08 .34 -

.58 

-

.23 

.23 
  30 4.94 1.91 .45 .32 4.64 2.58 .71 .04 .30 -

.67 

-

.26 

.28 
25 .30 10 12.51 3.91 .67 .20 12.32 4.72 .75 .15 .19 -

.81 

-

.08 

.05 
  20 12.52 3.88 .67 .20 12.27 4.65 .76 .09 .25 -

.77 

-

.09 

.11 
  30 12.50 3.89 .67 .20 12.22 4.64 .77 .07 .28 -

.75 

-

.10 

.13 
 .50 10 12.42 3.92 .68 .34 12.18 4.71 .75 .21 .24 -

.79 

-

.07 

.13 
  20 12.44 3.90 .67 .34 12.10 4.63 .75 .17 .34 -

.73 

-

.08 

.17 
  30 12.32 3.93 .67 .34 11.95 4.66 .76 .14 .37 -

.73 

-

.09 

.20 
 .70 10 12.55 3.92 .67 .48 12.15 4.73 .75 .27 .40 -

.81 

-

.08 

.21 
  20 12.51 3.89 .67 .47 12.03 4.71 .76 .25 .48 -

.82 

-

.09 

.22 
  30 12.65 3.91 .67 .47 12.14 4.76 .77 .22 .51 -

.85 

-

.10 

.25 
50 .30 10 25.11 7.16 .80 .24 24.95 8.02 .83 .25 .16 -

.86 

-

.03 

-

.01   20 25.04 7.13 .80 .24 24.69 7.96 .83 .17 .35 -

.83 

-

.03 

.07 
  30 24.97 7.11 .80 .24 24.60 8.02 .84 .12 .37 -

.91 

-

.04 

.12 
 .50 10 25.01 7.14 .80 .40 24.76 8.03 .83 .35 .25 -

.89 

-

.03 

.05 
  20 25.30 7.09 .80 .40 24.79 7.91 .83 .28 .51 -

.82 

-

.03 

.12 
  30 24.90 7.11 .80 .40 24.57 7.92 .84 .25 .33 -

.81 

-

.04 

.15 
 .70 10 24.93 7.13 .80 .56 24.41 8.00 .82 .44 .52 -

.87 

-

.02 

.12 
  20 24.94 7.13 .80 .56 24.18 8.00 .83 .40 .76 -

.87 

-

.03 

.16 
  30 24.94 7.13 .80 .57 24.11 7.89 .83 .38 .83 -

.76 

-

.03 

.19 
Note. All values were reported as an average of four subdomains.  
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Table 11 

Analysis of added value by identification of aberrant responses for applied data 

       Inter-Subdomain 

Correlations 

   

Method Data 

Type 

n Subdomain # 

Items 

M SD 1 2 3 4 PRMSES PRMSEX Added 

Value? 

--- Total 8803 1 11 5.06 2.52 1 .69 .71 .63 .70 .96 No 

   2 13 8.07 3.05 --- 1 .73 .68 .75 .97 No 

   3 16 9.34 3.60 --- --- 1 .70 .77 .98 No 

   4 8 5.16 1.95 --- --- --- 1 .66 .97 No 

HT Non-

Outlier 

8656 1 11 5.00 2.45 1 .68 .69 .62 .68 .97 No 

   2 13 8.05 3.01 --- 1 .71 .66 .74 .97 No 

   3 16 9.31 3.53 --- --- 1 .69 .76 .98 No 

   4 8 5.16 1.92 --- --- --- 1 .65 .97 No 

HT Outlier 147 1 11 6.79 3.70 1 .92 .91 .88 .89 1.00 No 

   2 13 7.69 4.37 --- 1 .92 .90 .91 1.00 No 

   3 16 9.18 5.44 --- --- 1 .90 .93 1.00 No 

   4 8 4.56 2.94 --- --- --- 1 .88 1.00 No 

Robust Non-

Outlier 

8224 1 11 5.14 2.53 1 .73 .74 .67 .70 1.00 No 

   2 13 8.20 2.99 --- 1 .77 .72 .74 1.00 No 

   3 16 9.52 3.54 --- --- 1 .73 .76 1.00 No 

   4 8 5.26 1.87 --- --- --- 1 .63 1.00 No 

Robust Outlier 579 1 11 3.99 2.00 1 .07 .09 .14 .51 .19 Yes 

   2 13 6.40 3.35 --- 1 .12 .17 .79 .44 Yes 

   3 16 7.02 3.56 --- --- 1 .30 .75 .55 Yes 

   4 8 3.89 2.44 --- --- --- 1 .79 .49 Yes 
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Table 12 

Profile analysis of applied data for total sample and outliers by index 

Method Subdomain Mean Subdomain 

Score 

Elevation Scatter Shape 

Total Sample 1 5.06 

6.91 2.14 

-1.85 

N = 8803 2 8.07 1.16 

 3 9.34 2.43 

 4 5.16 -1.75 

HT Outliers 1 6.79 

7.06 1.93 

-0.27 

N = 147 2 7.69 0.64 

 3 9.18 2.13 

 4 4.56 -2.50 

MD Outliers 1 3.99 

5.33 1.62 

-1.34 

N = 579 2 6.4 1.08 

 3 7.02 1.70 

 4 3.89 -1.44 

HT & MD 

Outliers  

1 5.18 

3.82 1.60 

1.37 

N = 22 2 4.13 0.32 

 3 4.45 0.64 

 4 1.5 -2.32 

Note. Non-outliers were not listed as the results were nearly identical to the total sample. 
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Table 13 

Mean subdomain differences between aberrant and non-aberrant cases by detection 

method 

HT Index 

 Aberrant 

(N = 8656) 

Non-Aberrant 

 (N = 147) 

Effect Size 

Subdomain M SD M SD d 

1 5.00 2.45 6.79 3.70 .57* 

2 8.05 3.01 7.69 4.37 -.10 

3 9.31 3.53 9.18 5.44 -.03 

4 5.16 1.92 4.56 2.94 -.24* 

Mahalanobis Distance Index 

 Aberrant 

(N = 8224) 

Non-Aberrant 

(N = 579) 

 

 M SD M SD d 

1 5.06 2.52 3.99 2.00 -.47* 

2 8.07 3.05 6.40 3.35 -.52* 

3 9.34 3.60 7.02 3.56 -.65* 

4 5.16 1.95 3.89 2.44 -.58* 

Note. * denotes that the mean score difference between the total sample and respective 

aberrant identification procedure was statistically significant based on an independent-

group t-test with an alpha-level of .05. 
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Figure 1. Multidimensional cases incorrectly identified as non-aberrant from the 

unidimensional model by the Mahalanobis Distance measure. 
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Figure 2. Multidimensional cases correctly identified as non-aberrant from the 

unidimensional model by the Mahalanobis Distance measure. 
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Figure 3. Comparison of mean score profile variability and standard error of 

measurement for outlier observations identified via the Mahalanobis Distance measure 

across conditions. Note that the inter-subdomain correlations were equal to .70 and the 

proportion of multidimensionality was equal to 10% for all three conditions illustrated.  
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Figure 4. Scatterplot of outlier classifications by the Mahalanobis Distance and HT 

indices for the applied dataset. 
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Figure 5. Score profiles of applied dataset for total sample and outliers identified by 

procedure.  
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Figure 6. Applied comparison of mean score profile variability and standard error of 

measurement for outlier observations identified via the Mahalanobis Distance measure. 
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CHAPTER 5 

DISCUSSION 

5.1 Overview 

 The need for educational assessments to serve as a basis for evidence-based 

decision making for instructional and institutional reform has led to an increased desire 

for fine-grained feedback. The methodological discussion regarding diagnostic 

information in the literature has been consumed by developing new methodologies to 

provide such information in a valid and reliable way. Although there are multiple 

approaches to obtaining diagnostic information, research into practice has taught us two 

things: (a) fine-grained level information is most often provided using raw subscores, and 

(b) these raw subscores rarely provide added value beyond the total score. Such trends 

suggest that the current practice of reporting raw subscores as diagnostic information may 

lead to unintended consequences of score interpretation, such as the misplacement of 

resources in modifying policy and instruction and/or incorrect high-stakes accountability 

outcomes. 

 To provide a solution to the current state of diagnostic score reporting, this study 

proposed a new approach to deciding on who should receive such information. Presently, 

researchers and practitioners have emphasized that every examinee will receive 

subscores; however, it is argued that diagnostic feedback should be required only for 

examinees that demonstrate a need, which can be defined as an individual that 

demonstrates poor test performance on one or more subdomains when compared to their 

performance on the remaining subdomains. Therefore, this study was implemented to 

illustrate that raw subscores can be valid and reliable for some examinees, even when 
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there is not subscore added value for the total sample due to short subdomain test lengths 

(e.g., 10 items) and strong inter-subdomain correlations (e.g., r = .70). This chapter 

discusses the major findings of the study and reference is made to the literature where 

possible. The first section discusses results related to the degree of masking effects on 

subscore added value when only a proportion of examinees possess multidimensional 

data. This is followed by a discussion of accuracy rates for two procedures employed to 

identify cases at the examinee-level that significantly diverged from unidimensionality. 

The chapter concludes with outlining some limitations of the study and directions for 

future research. 

5.2 Degree of Masking Effects on Subscore Added Value 

 Evaluations of subscore added value for operational testing programs have rarely 

demonstrated valid subscore reporting. This has led researchers to largely disparage the 

use of reporting raw subscores as diagnostic information due to concerns of consequential 

validity. Regardless of the psychometric concerns, practitioners have continued to 

demand that subscores are reported, which has caused a rift between the ethical 

responsibility of measurement professionals and serving the needs of clients or 

stakeholders (Brennan, 2012). To address the issue of reporting raw subscores as 

diagnostic information, researchers have proposed the use of augmentation procedures to 

improve subscore reliability by utilizing collateral information (i.e., the total score or 

scores from other subdomains) to improve the stability of subscore estimation (e.g., 

Haberman, 2008; Wainer et al., 2001). However, as noted by Skorupski and Carvajal 

(2001), these methods largely improve subscore reliability at the cost of subscore 

distinctiveness by forcing an examinee’s score profile to look more like the mean score 
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profile for all examinees or by making all subscore means and standard deviations for an 

examinee essentially the same across all subdomains. As augmentation procedures have 

proved to be less useful than originally thought, a new approach was needed to identify 

individuals with added value due to subscore distinctiveness.   

 The new approach conceptualized in this study was derived from the belief that 

subscore added value is not invariant across all examinees as a model cannot adequately 

represent mental phenomena equally well for all individuals (Reise & Hidaman, 1999). 

To support this assertion it was necessary to demonstrate that individuals that differ from 

the majority of the sample in terms of subdomain distinctiveness can often go unnoticed 

when assessing added value for the total sample. To this end, simulation studies were 

implemented to evaluate the degree of masking effects for examinees with 

multidimensional data when only examining subscore added value for the total sample, 

which is the current practice. Specifically, up to 30% of the total sample was simulated to 

possess multidimensional data, based on a correlated-traits model, with varying degrees 

of subdomain inter-correlations (.30, .50, and .70) and subdomain test lengths (10, 25, 

and 50), while the remaining sample possessed unidimensional data. However, to avoid 

confounding effects when assessing the degree of masking effects, it was first important 

to assess the conditions necessary for added value when the total sample possessed 

multidimensional data.  

Although Sinharay (2010) also conducted an analysis to evaluate the conditions 

necessary to provide subscore added value, this study differed in two ways: (a) much 

lower inter-subdomain correlations were examined and (b) disattenuated correlations 

were not used in evaluating added value via Haberman’s (2008) procedure. Specifically, 
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the lowest level of inter-subdomain correlations evaluated by Sinharay was .70, whereas 

this study looked at inter-subdomain correlations as low as .30 and .50. In terms of 

disattenuated correlations, they were not used in this study as they can lead to 

inappropriate inflation of estimates if there is substantial: (a) underestimation of 

reliability, (b) sampling error, and (c) outliers (Osborne, 2003). As it was expected that in 

the context of assessing subscore added value that there would be substantial 

underestimation of reliability due to short subdomain test lengths, use of disattenuated 

correlations may have confounded the findings of this study and as a result, were not 

employed.  

In terms of examining the conditions necessary for subscore added value, results 

demonstrated that regardless of inter-subdomain correlations no subscore added value 

was obtained when subdomain test lengths were equal to 10 (40 total items). As the 

subdomain test length increased, the percentage of replications with subscore added value 

increased for most inter-subdomain correlation conditions. As an example, when the 

subdomain test lengths were equal to 25 or 50 items and the inter-subdomain correlations 

were equal to .30, added value was obtained for 100% of replications. Similarly, 100% 

added value was observed for an inter-subdomain correlation of .50 with a subdomain 

test length of 50, but added value decreased to 61% when the subdomain test length 

decreased to 25 items. Interestingly, 0% added value was obtained for inter-subdomain 

correlations of .70 with subdomain test lengths of 25 items; however, when the 

subdomain test length increased to 50 items, added value was observed for 59% of the 

replications.  
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Results from this study differed from Sinharay (2010) in a number of ways. As an 

example, Sinharay (2010) found that subscore added value was obtained 25% of the time 

when there were four subdomains, subdomain test lengths were equal to 10, and inter-

subdomain correlations of .70 were held constant across subdomains, while this study 

found added value for 0% of replications. Furthermore, for the condition with four 

subdomains, inter-subdomain correlations of .70, and subdomain test lengths of 50, 

Sinharay found added value at a 100% rate, whereas this study found added value at 

61%. The higher levels of added value observed by Sinharay may have been due largely 

to the use of both disattenuated correlations and different generating item parameters. As 

an example, the average subscore reliability obtained in this study was .45 for a 

subdomain test length of 10 items and inter-subdomain correlations of .70, while under 

the same conditions, Sinharay obtained an average subscore reliability of .56. 

Furthermore, across all conditions, Sinharay only simulated sample sizes of 1,000 for 

each replication, while in this study 10,000 simulees were included in each replication, 

which may have been one of the plausible differences in the percentage of added value 

observed between the two studies. That is, the smaller sample size employed in 

Sinharay’s study may have led to less stability in PRMSES and PRMSEX estimates, which 

may have led to increased rates of added value. As an example, for the condition with 10 

subdomain items and inter-correlations of .70, the average PRMSES (.57) and PRMSEX 

(.62) values were extremely similar, which could have meant that due to sampling error a 

number of replications were classified as providing added value when in actuality no 

added value was provided. Regardless, both studies concluded that added value is rarely 

provided when subdomain test lengths are as low as 10 items.  
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This study also contributed to the literature by evaluating added value for inter-

subdomain correlations that were much lower than those in Sinharay’s study. 

Specifically, this study showed that under the most ideal situation of multidimensionality 

where inter-subdomain correlations of .30 were present, no added value was observed 

when subdomain test lengths were 10 items. Even under more realistic correlations of 

.50, which have been observed in operational tests by Sinharay and Haberman (2010), 

added value was only partially observed for subdomain test lengths of 25 items. Taken 

together, this study provides further evidence that when analyzing subscore added value 

for the total sample, multidimensional data does not guarantee subscore added value.  

The next step was to evaluate whether those examinees that met the necessary 

conditions for added value could be masked if the majority of the sample possessed 

unidimensional data. To avoid confounding effects, only conditions that were found to 

possess added value at a 100% rate with all multidimensional data were reported. Results 

demonstrated that when the total sample was comprised of up to 30% of examinees with 

added value no more than 3% of the replications were found to possess added value when 

applying Haberman’s (2008) method to the total sample. This result suggested that added 

value may not be invariant and points to the need to distinguish between individuals that 

may or may not possess data that would allow for reporting distinct and reliable raw 

subscores as a means of diagnostic information.  

It should be noted that Sinharay and Haberman (2014) were the first in the 

literature to propose evaluating subscore added value invariance, but the purpose of their 

approach differed greatly from this study. Specifically, they suggested that subscore 

added value invariance should be conducted as a fairness evaluation for protected 
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minority groups to ensure that score interpretability is equivalent. In such an approach, if 

added value were found for one group and not for another, this would lead to follow-up 

analyses rather than differential reporting of subscores by group. Put simply by Sinharay 

and Haberman (2014), “In operational testing, one has either to report subscores for all 

the subgroups or not to report subscores for any subgroup” (p. 29). However, in this 

paper it was argued that the utility of reporting subscores for an individual should not be 

based on one’s manifest characteristics (e.g., gender or ethnicity), but rather on individual 

needs for diagnostic information, which is largely driven by a degree of multidimensional 

data at the individual-level. Furthermore, it was argued that if distinct and reliable 

subscores can be reported for an individual, then such information should be reported to 

assist in improving instruction and learning, regardless of the demographic characteristics 

of the examinee.  

5.3 Aberrant Detection Procedures for Assessing Subscore Added Value Invariance  

 As it was argued that the invariance of subscore added value should be based on 

test performance rather than demographic variables, it was proposed that multivariate 

outlier and non-parametric person-fit statistics should be applied to individual-level data 

to identify aberrant score profiles and response patterns respectively due to 

multidimensionality. The multivariate outlier detection procedure applied to this study 

was the Mahalanobis Distance measure, which has been found to be an adequate method 

for identifying individual-level data that diverge from unidimensionality (Yuan, Fung, & 

Reise, 2004). Although there are numerous person-fit statistics that are based on classical 

test theory, item response theory, and structural equation modeling, the HT index was 

applied in this study as it has shown promise in most accurately identifying a number of 
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different aberrant response behaviors (e.g., Karabatsos, 2003). Simulation analyses were 

applied to evaluate the adequacy of each procedure, which was defined in terms of Type I 

error, power, and subscore added value classifications.   

 Across conditions, Type I error was found to be maintained at acceptable rates at 

or below 5%; however, it should be noted that the Type I error rate of the HT index 

increased as the subdomain test length decreased. Figure 7 demonstrates this dependency 

for conditions that differed solely in terms of subdomain test length. Specifically, we can 

see in the upper portion of Figure 7 that the purely multidimensional data for a test with 

subdomain test lengths of 10 items produced a distribution of the HT index that ranged in 

value from -0.12 to 0.015, which indicated that a small proportion of multidimensional 

cases should be classified as non-aberrant. As a result, the density of the HT index 

distribution for the combined data (both unidimensional and multidimensional data) was 

increased around the cut-value of 0, which led to increased Type I errors. In comparison, 

the lower portion of Figure 7 shows that for a test with subdomain test lengths of 50 the 

HT index distribution for the multidimensional data were less variable and the values 

were predominately constricted between -0.1 and 0. As a result, the combined 

distribution was distinctively bimodal with the means of both modes being relatively 

distant from the cut-point. This resulted in decreased Type I error rates that were near 

0%; however, it should be noted that even with short subdomain test lengths of 10 items, 

the Type I error rates were on average equal to 2%, which was mainly due to the 

distinctive bimodal distributions of the HT index for the combined data across conditions. 

This distinctiveness also led to extremely high power rates that were near 100% across 

conditions and were found to be relatively independent of subdomain test lengths, 
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proportion of multidimensionality, and inter-subdomain correlations. Due to the low 

Type I error and high power rates that were observed, the HT index was found to possess 

minimal bias in subscore added value classifications.  

In contrast to the HT index, the Mahalanobis Distance index was found to possess 

differential power rates by condition. That is, although the Type I error rates were 

maintained at 5%, power was found to be dependent on the proportion of 

multidimensional cases in the sample, subdomain test length, and inter-subdomain 

correlations. Specifically, power increased as the subdomain test lengths increased, while 

decreasing rates were observed as both the proportion of multidimensional cases and 

inter-subdomain correlations increased. This dependency is clearly illustrated in Figure 8, 

which shows the degree of overlap between the distributions of the generated 

unidimensional and multidimensional cases by condition. Although Yuan, Fung, and 

Reise (2004) proposed the use of Mahalanobis Distance in assessing unidimensionality, 

they only evaluated the method using applied datasets and as a result, did not assess Type 

I error and power rates. Consequently, there is no previous research in relation to Type I 

error and power rates for the Mahalanobis Distance measure that may support the 

findings of this study.  

A closer examination of the aberrant cases identified by the Mahalanobis Distance 

measure demonstrated that only the more extreme multidimensional cases were 

identified. Such an assertion was supported by comparing the descriptive statistics of the 

generated multidimensional data and the aberrant cases identified by this method. In 

doing so, one sees that across conditions the aberrant cases tended to possess lower mean 

subdomain scores and greater variability (Table 10). To better understand why this 
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occurred, one can simply examine the item characteristic curves seen in Figure 9. As the 

aberrant cases were generated from a multidimensional extension of the three-parameter 

logistic model, there was greater variation in the probability of correctly responding to an 

item at the lower end of the theta continuum due to the pseudo-guessing parameter, while 

such variation decreased towards the upper end of the continuum. As a result, a ceiling 

effect was observed for high ability simulees, whereas due to possible guessing effects 

there was greater variation for low ability simulees. This variability led to score profiles 

that possessed more dispersion than the mean sample score profile, which was relatively 

flat, and as the dispersion in score profiles increased, the probability of being identified as 

an aberrant case by the Mahalanobis Distance measure also increased. Consequently, the 

aberrant cases possessed lower absolute subdomain means and greater subdomain 

variability when compared to the generated multidimensional data; however, it should be 

noted that the difference in subdomain means was practically negligible. A closer 

examination of the subdomain variability showed that on average the variability in score 

profiles observed for the aberrant cases was larger than would be expected by random 

error.  

The increased variability of the aberrant cases led to increased subdomain 

reliability and decreased inter-subdomain correlations. As the inter-subdomain 

correlations and reliability are the two pieces of information that drive inferences based 

on Haberman’s (2008) method, added value was obtained for nearly 100% of the 

replications when assessing the aberrant cases identified using the Mahalanobis Distance 

measure. This finding was supported in an analysis of an operational dataset in which 

only the cases identified using the Mahalanobis Distance measure were found to provide 
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added value, while the total sample and cases identified using the person-fit index were 

found to have no added value. Taken together, these results suggested that the 

Mahalanobis Distance measure may be an adequate procedure to identify score profiles 

that may possess meaningful variability.  

5.4 Limitations and Directions for Future Research 

 Although this study illustrates a promising solution to providing valid and reliable 

diagnostic information to stakeholders, there are a number of limitations that must be 

discussed. For one, clearly when conducting simulation analyses, the generalizability of 

findings is limited to the particular context that is created. Though a concerted effort was 

made to include the most pertinent independent variables along with respective levels, it 

was impossible to include everything of importance. One area of research that was not 

covered in the present study was investigating the impact of the number of subdomain 

dimensions on identifying examinees that significantly diverged from unidimensionality. 

Although manipulating the number of subdomains generated would not have impacted 

the HT index as misfit was assessed using item-level data, the power rates of the 

Mahalanobis Distance measure may have been more influenced. Specifically, as only 

dichotomous items were examined, raw subdomain scores were employed to compute the 

Mahalanobis Distance measure. As mentioned, this was done largely as the Mahalanobis 

Distance measure is known to exhibit odd behavior with non-normal data as the 

underlying assumption is that the data are continuous. Therefore, by holding the number 

of subdomains evaluated at four across both simulation and real data analyses, all 

analyses concerning the Mahalanobis Distance measure were based only on four 

independent variables.  
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As this measure evaluates distances from the centroid based on the mean, 

variance, and covariance of p variables, increasing the variability within and between the 

p variables will increase power. The assertion that variability is necessary for accurate 

identification of multivariate outliers is supported by results from this study, which 

demonstrated higher power rates when the number of items within each subdomain 

increased, regardless of inter-subdomain correlations and percentage of 

multidimensionality in the sample. Therefore, it would be of interest to evaluate power 

rates for the Mahalanobis Distance measure when a test is comprised of either 

dichotomous or polytomous items with less than four subdomains (and more than one). 

Such an analysis is of particular interest as Sinharay (2010) found that in a review of 25 

operational tests 52% of tests reported raw scores for either two or three subdomains. The 

evaluation of bivariate outliers can be accomplished via graphical procedures, such as the 

bagplot approach (Rousseeuw, Ruts, & Tukey, 1999), but further research should 

evaluate power rates of the Mahalanobis Distance measure when only reporting three 

subdomains based on the subdomain test lengths included in this study.  

In terms of the methodologies implemented in this study to identify aberrant 

cases, there were two limitations. The first limitation was that only two methods among a 

number of possible methodologies were employed. As an example, the HT index is 

merely one of 36 or more person-fit indices currently in the literature. Although it is one 

of the best performing indices in previous research (Karabatsos, 2003) and was found to 

perform exceptionally well in identifying multidimensional cases, it is based on 

evaluating similarities in score patterns by assuming the Guttman scaling principle. In 

hindsight, such an approach is limited in two ways. First, as with any person-fit, an 
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aberrant case can be due to a number of possible issues, not related to solution-based 

behavior (e.g., random responding). Secondly, as the objective of identifying aberrant 

cases is to assist in providing some examinees with distinct and reliable subscores, the 

focus of the assessment should be at the subdomain-level as opposed to the item-level, 

which is not the case with most person-fit indices. As a result, procedures that input 

subdomain scores as independent variables appear to be of greatest interest.  

To this end, the Mahalanobis Distance index was employed in this study and was 

found to identify cases with added value at near 100% rates. However, it should be noted 

that this measure is merely one of numerous procedures that can be viewed as exploratory 

profile analysis methods, which include cluster analysis, configural frequency analysis, 

and profile analysis via multidimensional scaling (PAMS; Ding, 2001). Furthermore, the 

Mahalanobis Distance index identifies aberrant cases dichotomously, which largely 

ignores the within-group variability, whereas other exploratory procedures, such as 

PAMS, provide continuous person profile indices. As a result, further research should 

evaluate the comparability of these various exploratory profile analysis methods in 

identifying cases with poor performance on one or more subdomains when compared to 

the remaining subdomains of interest.  

An additional limitation associated with the methodologies employed to identify 

aberrant cases was the use of single critical values for both the HT and Mahalanobis 

Distance indices. Such an approach was limited in that it assumed that the distribution 

underlying the test statistic of interest was independent of the proportion of 

multidimensionality, degree of multidimensionality, and subdomain test length of the 

generated and applied data. However, it should be noted that such an assumption was 
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only applied to the Mahalanobis Distance index as the HT index does not base the 

classification of aberrant score patterns on a statistical test. Instead, this index applies the 

heuristic rule that a negative correlation between an examinee’s score pattern with the 

score patterns of the remaining examinees is indicative of an aberrant case. This general 

rule was found to be an excellent cut-point for maintaining Type I error and increasing 

power to near 1.00 across conditions in this study. In contrast, the Mahalanobis Distance 

index was assumed to follow a Chi-square distribution with a critical value at an alpha-

level of .05. Evidence to support the question of whether this distribution functioned 

independently from the independent variables included in this study can be seen in Figure 

8. Specifically, the inclusion of up to 30% multidimensional data that ranged in 

subdomain inter-correlations from .30 to .70 and subdomain test lengths ranging from 10 

to 50 items looked to have little impact on the assumed Chi-square distribution, 

particularly when looking at the area where the critical value was set. Clearly, the critical 

value could have been decreased to identify more multidimensional cases, but as seen in 

Figure 8 that would have increased Type I error rates. Such an approach was found to be 

undesirable as the main objective of this study was to find a methodology to identifying 

distinct and reliable subscores for some examinees, while avoiding the possible 

consequential validity issues associated with providing subscore information that lacked 

adequate distinctiveness and reliability. As mentioned, the consequential validity of 

supplying such information is the possibility of incorrect high-stakes decisions associated 

with poor subdomain performance (e.g., remedial instruction and negative teacher 

accountability ratings) and wasted resources of attempting to improve instruction and 

learning for an area of need when the need is actually lacking. As a result, the assumption 
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of constraining the Chi-square critical value to be equal at an alpha-level of .05 for the 

Mahalanobis Distance index across conditions was found to be tenable.  

An additional limitation associated with this study was the sole use of 

Haberman’s (2008) procedure as a criterion for assessing subscore added value. Although 

such an approach is popular in both research and practical contexts, it holds a number of 

limitations. For one, it assumes that the model underlying the data is a simple structure 

correlated-traits model. As a result, when applying this criterion to assessing subscore 

added value invariance, it was assumed that all outliers that diverged from 

unidimensionality possessed data that fit this model. However, it is possible that the 

assumption of a correlated-traits model may have been untenable. Therefore, it is 

suggested that for future analyses if sample sizes permit, one can apply exploratory 

dimensionality procedures on one-half of the data and cross-validate with a confirmatory 

approach using the remaining data. If a multidimensional (e.g., a bifactor or higher-order) 

model other than the correlated-traits model is found to provide improved fit for the 

outlier data, an interesting concern arises. That concern is whether Haberman’s (2008) 

model provides accurate inferences related to subscore added value that is robust to 

violations of the dimensionality assumption, which clearly is a question that requires 

further research. To avoid the dimensionality assumption inherent in Haberman’s (2008) 

procedure, a simple approach would be to report subscores for the cases that diverge from 

unidimensionality using a MIRT model that is found to best fit the data based on 

dimensionality assessments.  

The second assumption underlying Haberman’s (2008) procedure is that 

subdomain reliability is equivalent across all examinees. To be fair, Brennan (2012) as 
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well as Feinberg and Wainer (2014) have made the same assumption in their methods for 

assessing subscore added value. In combination with the use of subdomain correlations, 

assuming that reliability is consistent across all examinees has led both Brennan (2012) 

as well as Feinberg and Wainer (2014) to conclude that their procedures for assessing 

subscore added value provide identical inferences as Haberman’s (2008) procedure. 

Regardless, the assumption of equivalent reliability across all examinees may be 

untenable as reliability may be conditional on examinee ability. As a result, there have 

been recent calls for the inclusion of conditional reliability estimates to assess both IRT 

model selection for estimating subscores (Bulut, 2013) as well as assessing subscore 

added value (Raymond & Feinberg, 2015).  

The latter approach specifically assesses subscore added value by taking the 

proportion of individual-level score profile variability and the mean conditional reliability 

across subtests for an examinee. Raymond and Feinberg’s (2015) approach differs from 

that of Haberman (2008), Brennan (2012), Feinberg and Wainer (2014), as well as the 

general procedure proposed in this study by assessing added value not for a group, but 

rather for an individual. As such, examinee-level differences in subscore profile 

variability and score precision can be taken into consideration when evaluating added 

value. However, it should be noted that Raymond and Feinberg’s (2015) approach is very 

much in the early stages of research. For example, there currently are no guidelines for 

making classifications of added value based on either hypothesis testing or heuristics. 

Clearly, additional research is needed to identify a threshold that may indicate 

meaningful variability. However, once a sensible criterion has been developed, future 
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research should look into the comparability of added value classifications between the 

approaches suggested in this paper and by Raymond and Feinberg (2015). 

Lastly, this study raises practical concerns related to score reporting. Specifically, 

the concept that subscores may be valid for some examinees elicits an important question, 

how should differential examinee score information be reported to stakeholders? To the 

best of the author’s knowledge, there has been little attention given to this area in the 

literature. Up to this point, researchers have suggested personalizing score reports 

(Goodman & Hambleton, 2004) and being cognizant of the intended audience’s 

characteristics for improved score report design (Zapata-Rivera & Katz, 2014). As a 

result, further research is needed to better understand if stakeholders will be open to the 

idea that some examinees will receive diagnostic information, while others will not. For 

example, will teachers that perceive diagnostic information to be helpful appreciate the 

fact that not all students will receive such information because of measurement concerns? 

It is conceivable to believe that a parent could receive subdomain information for one 

child and not another. Would such differences in score reports cause confusion and 

ultimately, lead to a loss of confidence regarding assessment results? Although such 

uncertainty may have largely been caused by the current practice of providing diagnostic 

information to all examinees, it is hypothesized that a shift in perspective on subscore 

reporting will take both time and effort in explaining measurement concerns to 

stakeholders (e.g., Zwick, Zapata-Rivera, & Hegarty, 2014). 

5.5 Conclusion 

 The results of this study have a number of important implications. For one, this 

study demonstrated the need to assess subscore added value invariance based on test 
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performance. Specifically, it was shown that up to 30% of examinees with added value 

can be masked when only evaluating the total sample. Secondly, the Mahalanobis 

Distance measure, which is a multivariate outlier detection procedure was found to show 

promise for identifying aberrant cases that possessed subscores of added value. Such an 

assertion was supported via both simulated and applied datasets. In particular, the 

Mahalanobis Distance measure was found to possess adequate Type I error rates (i.e., 

falsely identifying unidimensional score profiles as aberrant) and although it was found to 

possess lower power rates than the person-fit procedure (HT index) included in this study, 

the cases identified most likely possessed high multidimensionality. As a result, these 

cases were found to have added value of nearly 100% when assessed as a group, 

regardless of generating subdomain test-lengths or inter-subdomain correlations. In 

contrast, the HT index identified cases that possessed added value only when subdomain 

test lengths were comprised of 25 or more items and moderate inter-subdomain 

correlations. To support these findings, a large-scale dataset was analyzed and of the two 

procedures only the Mahalanobis Distance measure was found to provide added value for 

about 7% of the sample when no added value was obtained for the total sample or the 

cases identified using the HT index. Closer examination of the aberrant cases identified by 

the Mahalanobis Distance measure for both simulated and operational datasets showed 

that the average subscore profile was more variable than would be expected based on 

random error. This result supports the idea that the Mahalanobis Distance measure is able 

to identify cases with meaningful variability that may allow for both valid and reliable 

subdomain inferences. 
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 Besides the methodological implications that this study provides, it also sheds 

light on a new perspective on subscore reporting, which is that subscores are not for 

everyone. Traditionally, from a psychometrician’s perspective, the decision to provide 

subscore information is evaluated for the total sample. Such a perspective unnecessarily 

frames subscore reporting dichotomously as either being useful or not. However, framing 

the question of subscore utility in this manner ignores one simple truth, subscores may be 

informative for some individuals within the total sample, whereas they may be 

uninformative for others. This study proposed an approach that could be sensitive to this 

lack of invariance and is practical in a number of ways. For one, it does not require either 

multidimensional modeling or overhauling the test development process as has been 

suggested by some researchers (e.g., Wainer, Sheehan, & Wang, 2000). Secondly, it can 

easily be applied in operational testing programs as the calculations can be quickly 

conducted in Excel or basic general statistical software packages, such as SPSS, SAS, or 

R. Taken together, this approach and shift in perspective concerning subscore reporting 

may allow testing programs to meet both legislative and stakeholder demands for 

diagnostic information, while also ensuring that the subscores provided to some 

examinees are of adequate psychometric quality, which may allow for valid subdomain 

inferences.  
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Figure 7. HT distributions by generating dimensionality and condition. I.Sub = the 

number of items by subdomain; r = inter-subdomain correlations of the generating 

multidimensional data; Multidim = the percentage of multidimensional data in the 

combined dataset. The vertical dotted line denotes the critical value employed to classify 

aberrant cases.   
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Figure 8. Distributions of the Mahalanobis Distance index by generating dimensionality and condition. I.Sub = the number of items by 

subdomain; r = inter-subdomain correlations of the generating multidimensional data; the percentage of multidimensional data in the 

combined dataset was constrained to 30%. The vertical dotted line denotes the critical value implemented for classifying aberrant 

cases.
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Figure 9. Item characteristic curves for each item by subdomain with a subdomain test 

length of 10 items.  
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