227 research outputs found

    HDL in the 21st Century A Multifunctional Roadmap for Future HDL Research

    Get PDF
    Low high-density lipoprotein cholesterol (HDL-C) characterizes an atherogenic dyslipidemia that reflects adverse lifestyle choices, impaired metabolism, and increased cardiovascular risk. Low HDL-C is also associated with increased risk of inflammatory disorders, malignancy, diabetes, and other diseases. This epidemiologic evidence has not translated to raising HDL-C as a viable therapeutic target, partly because HDL-C does not reflect high-density lipoprotein (HDL) function. Mendelian randomization analyses that have found no evidence of a causal relationship between HDL-C levels and cardiovascular risk have decreased interest in increasing HDL-C levels as a therapeutic target. HDLs comprise distinct subpopulations of particles of varying size, charge, and composition that have several dynamic and context-dependent functions, especially with respect to acute and chronic inflammatory states. These functions include reverse cholesterol transport, inhibition of inflammation and oxidation, and antidiabetic properties. HDLs can be anti-inflammatory (which may protect against atherosclerosis and diabetes) and proinflammatory (which may help clear pathogens in sepsis). The molecular regulation of HDLs is complex, as evidenced by their association with multiple proteins, as well as bioactive lipids and noncoding RNAs. Clinical investigations of HDL biomarkers (HDL-C, HDL particle number, and apolipoprotein A through I) have revealed nonlinear relationships with cardiovascular outcomes, differential relationships by sex and ethnicity, and differential patterns with coronary versus noncoronary events. Novel HDL markers may also have relevance for heart failure, cancer, and diabetes. HDL function markers (namely, cholesterol efflux capacity) are associated with coronary disease, but they remain research tools. Therapeutics that manipulate aspects of HDL metabolism remain the holy grail. None has proven to be successful, but most have targeted HDL-C, not metrics of HDL function. Future therapeutic strategies should focus on optimizing HDL function in the right patients at the optimal time in their disease course. We provide a framework to help the research and clinical communities, as well as funding agencies and stakeholders, obtain insights into current thinking on these topics, and what we predict will be an exciting future for research and development on HDLs

    The apolipoprotein A-I mimetic peptide, ETC-642, reduces chronic vascular inflammation in the rabbit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-density lipoproteins (HDL) and their main apolipoprotein, apoA-I, exhibit anti-inflammatory properties. The development of peptides that mimic HDL apolipoproteins offers a promising strategy to reduce inflammatory disease. This study aimed to compare the anti-inflammatory effects of ETC-642, an apoA-I mimetic peptide, with that of discoidal reconstituted HDL (rHDL), consisting of full-length apoA-I complexed with phosphatidylcholine, in rabbits with chronic vascular inflammation.</p> <p>Results</p> <p>New Zealand White rabbits (n = 10/group) were placed on chow supplemented with 0.2% (w/w) cholesterol for 6-weeks. The animals received two infusions of saline, rHDL (8 mg/kg apoA-I) or ETC-642 (30 mg/kg peptide) on the third and fifth days of the final week. The infusions of rHDL and ETC-642 were able to significantly reduce cholesterol-induced expression of intracellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in the thoracic aorta (p < 0.05). When isolated rabbit HDL was pre-incubated with human coronary artery endothelial cells (HCAECs), prior to stimulation with TNF-α, it was found that HDL from ETC-642 treated rabbits were more effective at inhibiting the TNF-α-induced increase in ICAM-1, VCAM-1 and p65 than HDL isolated from saline treated rabbits (p < 0.05). There were, however, no changes in HDL lipid composition between treatment groups.</p> <p>Conclusions</p> <p>Infusion of ETC-642 causes anti-inflammatory effects that are comparable to rHDL in an animal model of chronic vascular inflammation and highlights that apoA-I mimetic peptides present a viable strategy for the treatment of inflammatory disease.</p

    The relationship of fibroblast growth factor 21 with cardiovascular outcome events in the Fenofibrate Intervention and Event Lowering in Diabetes study

    Get PDF
    Aims/hypothesis Circulating fibroblast growth factor 21 (FGF21) levels are often elevated in obesity, dyslipidaemia, insulin resistance and type 2 diabetes. This study investigated the relationship of plasma FGF21 levels with cardiovascular events in patients with type 2 diabetes. Methods Plasma FGF21 levels were measured at baseline in 9,697 study participants with type 2 diabetes from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study by enzyme-linked immunosorbent assay. We assessed the association of FGF21 levels with incidence of different cardiovascular outcomes over 5-years. The primary outcome was total cardiovascular disease (CVD) events, and the secondary outcomes were the four individual components: coronary heart disease (CHD) events, total stroke, CVD mortality, coronary and carotid revascularization. Tertiary outcome was hospitalisation for angina pectoris. Results Higher baseline FGF21 levels were associated with higher risks of all cardiovascular outcome events after adjusting for the study treatment allocation (all p<0.01). The associations remained significant for total CVD events, and coronary and carotid revascularisation after further adjusting for confounding factors with HR (95% CI) being 1.28 (1.10, 1.50) and 1.26 (1.01, 1.56) respectively, for the highest tertile compared to the lowest tertile (overall effect p=0.002 and 0.007 respectively). The addition of FGF21 levels to a model including established CVD risk factors predicting total CVD led to a non-significant increase in the C-statistic, but resulted in significant integrated discrimination improvement and net reclassification improvement. Conclusions/interpretation Higher baseline plasma FGF21 levels were associated with higher risk of cardiovascular events in patients with type 2 diabetes

    Role of ABCG1 and ABCA1 in regulation of neuronal cholesterol efflux to apolipoprotein E discs and suppression of amyloid-β peptide generation

    Get PDF
    Maintenance of an adequate supply of cholesterol is important for neuronal function, whereas excess cholesterol promotes amyloid precursor protein (APP) cleavage generating toxic amyloid-β (Aβ) peptides. To gain insights into the pathways that regulate neuronal cholesterol level, we investigated the potential for reconstituted apolipoprotein E (apoE) discs, resembling nascent lipoprotein complexes in the central nervous system, to stimulate neuronal [3H]cholesterol efflux. ApoE discs potently accelerated cholesterol efflux from primary human neurons and cell lines. The process was saturable (17.5 μg of apoE/ml) and was not influenced by APOE genotype. High performance liquid chromatography analysis of cholesterol and cholesterol metabolites effluxed from neurons indicated that <25% of the released cholesterol was modified to polar products (e.g. 24-hydroxycholesterol) that diffuse from neuronal membranes. Thus, most cholesterol (∼75%) appeared to be effluxed from neurons in a native state via a transporter pathway. ATP-binding cassette transporters ABCA1, ABCA2, and ABCG1 were detected in neurons and neuroblastoma cell lines and expression of these cDNAs revealed that ABCA1 and ABCG1 stimulated cholesterol efflux to apoE discs. In addition, ABCA1 and ABCG1 expression in Chinese hamster ovary cells that stably express human APP significantly reduced Aβ generation, whereas ABCA2 did not modulate either cholesterol efflux or Aβ generation. These data indicate that ABCA1 and ABCG1 play a significant role in the regulation of neuronal cholesterol efflux to apoE discs and in suppression of APP processing to generate Aβ peptides

    Annexin A6 and NPC1 regulate LDL-inducible cell migration and distribution of focal adhesions

    Get PDF
    Cholesterol is considered indispensable for cell motility, but how physiological cholesterol pools enable cells to move forward remains to be clarified. The majority of cells obtain cholesterol from the uptake of Low-Density lipoproteins (LDL) and here we demonstrate that LDL stimulates A431 squamous epithelial carcinoma and Chinese hamster ovary (CHO) cell migration and invasion. LDL also potentiated epidermal growth factor (EGF) -stimulated A431 cell migration as well as A431 invasion in 3-dimensional environments, using organotypic assays. Blocking cholesterol export from late endosomes (LE), using Niemann Pick Type C1 (NPC1) mutant cells, pharmacological NPC1 inhibition or overexpression of the annexin A6 (AnxA6) scaffold protein, compromised LDL-inducible migration and invasion. Nevertheless, NPC1 mutant cells established focal adhesions (FA) that contain activated focal adhesion kinase (pY397FAK, pY861FAK), vinculin and paxillin. Compared to controls, NPC1 mutants display increased FA numbers throughout the cell body, but lack LDL-inducible FA formation at cell edges. Strikingly, AnxA6 depletion in NPC1 mutant cells, which restores late endosomal cholesterol export in these cells, increases their cell motility and association of the cholesterol biosensor D4H with active FAK at cell edges, indicating that AnxA6-regulated transport routes contribute to cholesterol delivery to FA structures, thereby improving NPC1 mutant cell migratory behaviour

    Phenotypic and Functional Changes in Blood Monocytes Following Adherence to Endothelium

    Get PDF
    Blood monocytes are known to express endothelial-like genes during co-culture with endothelium. In this study, the time-dependent change in the phenotype pattern of primary blood monocytes after adhering to endothelium is reported using a novel HLA-A2 mistyped co-culture model.Freshly isolated human PBMCs were co-cultured with human umbilical vein endothelial cells or human coronary arterial endothelial cells of converse human leukocyte antigen A2 (HLA-A2) status. This allows the tracking of the PBMC-derived cells by HLA-A2 expression and assessment of their phenotype pattern over time. PBMCs that adhered to the endothelium at the start of the co-culture were predominantly CD11b+ blood monocytes. After 24 to 72 hours in co-culture, the endothelium-adherent monocytes acquired endothelial-like properties including the expression of endothelial nitric oxide synthase, CD105, CD144 and vascular endothelial growth factor receptor 2. The expression of monocyte/macrophage lineage antigens CD14, CD11b and CD36 were down regulated concomitantly. The adherent monocytes did not express CD115 after 1 day of co-culture. By day 6, the monocyte-derived cells expressed vascular cell adhesion molecule 1 in response to tumour necrosis factor alpha. Up to 10% of the PBMCs adhered to the endothelium. These monocyte-derived cells contributed up to 30% of the co-cultured cell layer and this was dose-dependent on the PBMC seeding density.Human blood monocytes undergo rapid phenotype change to resemble endothelial cells after adhering to endothelium
    corecore