203 research outputs found

    Molecular Tuning of the Magnetic Response in Organic Semiconductors

    Full text link
    The tunability of high-mobility organic semi-conductors (OSCs) holds great promise for molecular spintronics. In this study, we show this extreme variability - and therefore potential tunability - of the molecular gyromagnetic coupling ("g-") tensor with respect to the geometric and electronic structure in a much studied class of OSCs. Composed of a structural theme of phenyl- and chalcogenophene (group XVI element containing, five-membered) rings and alkyl functional groups, this class forms the basis of several intensely studied high-mobility polymers and molecular OSCs. We show how in this class the g-tensor shifts, Δg\Delta g, are determined by the effective molecular spin-orbit coupling (SOC), defined by the overlap of the atomic spin-density and the heavy atoms in the polymers. We explain the dramatic variations in SOC with molecular geometry, chemical composition, functionalization, and charge life-time using a first-principles theoretical model based on atomic spin populations. Our approach gives a guide to tuning the magnetic response of these OSCs by chemical synthesis

    The local immune response of mice after Helicobacter suis infection: strain differences and distinction with Helicobacter pylori

    Get PDF
    Helicobacter (H.) suis colonizes the stomach of pigs and is the most prevalent gastric non-H. pylori Helicobacter species in humans. Limited information is available on host immune responses after infection with this agent and it is unknown if variation in virulence exists between different H. suis strains. Therefore, BALB/c and C57BL/6 mice were used to compare colonization ability and gene expression of various inflammatory cytokines, as determined by real-time PCR, after experimental infection with 9 different H. suis strains. All strains were able to persist in the stomach of mice, but the number of colonizing bacteria at 59 days post inoculation was higher in stomachs of C57BL/6 mice compared to BALB/c mice. All H. suis strains caused an upregulation of interleukin (IL)-17, which was more pronounced in BALB/c mice. This upregulation was inversely correlated with the number of colonizing bacteria. Most strains also caused an upregulation of regulatory IL-10, positively correlating with colonization in BALB/c mice. Only in C57BL/6 mice, upregulation of IL-1 beta was observed. Increased levels of IFN-gamma mRNA were never detected, whereas most H. suis strains caused an upregulation of the Th2 signature cytokine IL-4, mainly in BALB/c mice. In conclusion, the genetic background of the murine strain has a clear impact on the colonization ability of different H. suis strains and the immune response they evoke. A predominant Th17 response was observed, accompanied by a mild Th2 response, which is different from the Th17/Th1 response evoked by H. pylori infection

    Salmonella Typhimurium resides largely as an extracellular pathogen in porcine tonsils, independently of biofilm-associated genes csgA, csgD and adrA

    Get PDF
    In European countries, Salmonella enterica subspecies enterica serovar Typhimurium (Salmonella Typhimurium) is the serovar most frequently isolated from slaughter pigs1. Porcine carcass contamination with Salmonella Typhimurium can largely be attributed to persistently infected pigs. Even though tonsils are a predilection site for Salmonella persistence in pigs, virulence mechanisms necessary for cell invasion and intracellular survival do not contribute to tonsillar colonization2, suggesting that Salmonella Typhimurium resides mainly extracellularly in porcine tonsils. Biofilm formation is a mechanism used by several bacteria to survive in an extracellular context or in hostile environments3. The role of biofilm formation in Salmonella Typhimurium persistence in pigs is still unknown. It was the aim of the present study to determine whether Salmonella Typhimurium persists intracellularly or extracellularly in tonsils of pigs. Additionally, the role of biofilm formation in persistence of Salmonella Typhimurium in porcine tonsils was determined

    Characterization of the in vitro gene response of chicken cells to Salmonella Enteritidis

    Get PDF
    Salmonella Enteritidis (SE) is one of the most frequently reported causative agent of human gastroenteritis, originating mainly from poultry. Pathogenesis of SE infection in poultry is well-elucidated, but the complexity of the host cell response, and its relation to differring pathogenic potential of various strains is much less understood. Therefore we intended to provide a genome-wide comparative characterization of the gene expression profiles of chicken cells to wild type strains and virulence-related mutants of Salmonella Enteritidis. Freshly isolated chicken embryo fibroblast (CEF) cells co-incubated with Salmonella for 4 hrs were used to model gene response of young chickens to Salmonella infection and to measure the invasiveness of wild type strains SE147, SE11 and non-motile mutants of SE11 lacking the fliD gene and/or the virulence plasmid. Agilent custom 8×15K microarray was designed to profile the expression of 13741 chicken genes, with emphasis to those related to immune response. Significant gene expression changes with fold change ≥3 (in total of 31 genes) were verified by real-time PCR. Expression profile of infected CEF cells resulted in 314 genes significantly misregulated by the infection with the wild type strain SE147 (206 up-/108 down-regulations) while only 135 genes were significantly expressed as a result to SE11 infection (74 up-/61 down-regulations). There were 100 genes induced by both wild strains, among them CSF3 (colony-stimulating factor), IL-1β and IL-8 showing the highest upregulations. In contrast to this, infection with non-motile mutants lacking fliD gene and/or the virulence plasmid, did not cause any significant change in host gene expression. However real-time PCR results indicated that the cell cycle-related G0S2 switch-, and the enolase ENO2 genes were highly induced by the mutant strains, indicating that the reduced invasiveness of the mutants might have stimulated cell division and/or metabolism of the host cells. Results suggest that fliD gene plays a key role in the invasiveness of Salmonella strains, and could be considered as an important modulator of the chicken response to Salmonella infection. This work was supported by the EU FP6 NoE MedVetNet and OTKA 105635. Ama Szmolka is a holder of János Bolyai Research Scholarship of HAS

    Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin

    Get PDF
    BACKGROUND: In this study, we characterised the microbiota present in the faeces of 15- and 46-week-old egg laying hens before and after tetracycline or streptomycin therapy. In the first experiment, the layers were subjected to 7 days of therapy. In the second experiment, the hens were subjected to two days of therapy, which was repeated for an additional two days after 12 days of antibiotic withdrawal. This enabled us to characterise dynamics of the changes after antibiotic administration and withdrawal, and to identify genera repeatedly resistant to tetracycline and streptomycin. RESULTS: Real-time PCRs specific for Enterobacteriales, Lactobacillales, Clostridiales and Bifidobacteriales showed that changes in the microbiota in response to antibiotic therapy and antibiotic withdrawal were quite rapid and could be observed within 24 hours after the change in therapy status. Pyrosequencing of PCR amplified V3/V4 variable regions of 16S rRNA genes showed that representatives of the orders Clostridiales, Lactobacillales, Bacteroidales, Bifidobacteriales, Enterobacteriales, Erysipelotrichales, Coriobacteriales, Desulfovibrionales, Burkholderiales, Campylobacterales and Actinomycetales were detected in the faeces of hens prior to the antibiotic therapy. Tetracycline and streptomycin therapies decreased the prevalence of Bifidobacteriales, Bacteroidales, Clostridiales, Desulfovibrionales, Burkholderiales and Campylobacterales in faecal samples in both experiments. On the other hand, Enterobacteriales and Lactobacillales always increased in prevalence in response to both therapies. Within the latter two orders, Escherichia and Enterococcus were the genera prevalence of which increased after all the antibiotic treatments. CONCLUSIONS: The changes in microbiota composition induced by the antibiotic therapy were rapid and quite dramatic and only representatives of the genera Enterococcus and Escherichia increased in response to the therapy with both antibiotics in both experiments

    The role of ClpP, RpoS and CsrA in growth and filament formation of Salmonella enterica serovar Typhimurium at low temperature

    Get PDF
    BACKGROUND: Salmonellae are food-borne pathogens of great health and economic importance. To pose a threat to humans, Salmonellae normally have to cope with a series of stressful conditions in the food chain, including low temperature. In the current study, we evaluated the importance of the Clp proteolytic complex and the carbon starvation protein, CsrA, for the ability of Salmonella Typhimurium to grow at low temperature. RESULTS: A clpP mutant was severely affected in growth and formed pin point colonies at 10°C. Contrary to this, rpoS and clpP/rpoS mutants were only slightly affected. The clpP mutant formed cold resistant suppressor mutants at a frequency of 2.5 × 10(−3) and these were found not to express RpoS. Together these results indicated that the impaired growth of the clpP mutant was caused by high level of RpoS. Evaluation by microscopy of the clpP mutant revealed that it formed filamentous cells when grown at 10°C, and this phenotype too, disappered when rpoS was mutated in parallel indicating a RpoS-dependency. A csrA (sup) mutant was also growth attenuated a low temperature. An rpoS/csrA (sup) double mutant was also growth attenuated, indicating that the phenotype of the csrA mutant was independent from RpoS. CONCLUSIONS: The cold sensitivity of clpP mutant was associated with increased levels of RpoS and probably caused by toxic levels of RpoS. Although a csrA mutant also accumulated high level of RpoS, growth impairment caused by lack of csrA was not related to RpoS levels in a similar way

    SPI-1-encoded type III secretion system of Salmonella enterica is required for the suppression of porcine alveolar macrophage cytokine expression

    Get PDF
    Genes localized at Salmonella pathogenicity island-1 (SPI-1) are involved in Salmonella enterica invasion of host non-professional phagocytes. Interestingly, in macrophages, SPI-1-encoded proteins, in addition to invasion, induce cell death via activation of caspase-1 which also cleaves proIL-1β and proIL-18, precursors of 2 proinflammatory cytokines. In this study we were therefore interested in whether SPI-1-encoded type III secretion system (T3SS) may influence proinflammatory response of macrophages. To test this hypothesis, we infected primary porcine alveolar macrophages with wild-type S. Typhimurium and S. Enteritidis and their isogenic SPI-1 deletion mutants. ΔSPI1 mutants of both serovars invaded approx. 5 times less efficiently than the wild-type strains and despite this, macrophages responded to the infection with ΔSPI1 mutants by increased expression of proinflammatory cytokines IL-1β, IL-8, TNFα, IL-23α and GM-CSF. Identical macrophage responses to that induced by the ΔSPI1 mutants were also observed to the infection with sipB but not the sipA mutant. The hilA mutant exhibited an intermediate phenotype between the ΔSPI1 mutant and the wild-type S. Enteritidis. Our results showed that the SPI-1-encoded T3SS is required not only for cell invasion but in macrophages also for the suppression of early proinflammatory cytokine expression

    Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY): essential study design and rationale of a randomised clinical multicentre trial

    Get PDF
    Introduction: Diabetes mellitus affects 9% of the European population and accounts for 15% of healthcare expenditure, in particular, due to excess costs related to complications. Clinical trials aiming for earlier prevention of diabetic nephropathy by renin angiotensin system blocking treatment in normoalbumuric patients have given mixed results. This might reflect that the large fraction of normoalbuminuric patients are not at risk of progression, thereby reducing power in previous studies. A specific risk classifier based on urinary proteomics (chronic kidney disease (CKD)273) has been shown to identify normoalbuminuric diabetic patients who later progressed to overt kidney disease, and may hold the potential for selection of high-risk patients for early intervention. Combining the ability of CKD273 to identify patients at highest risk of progression with prescription of preventive aldosterone blockade only to this high-risk population will increase power. We aim to confirm performance of CKD273 in a prospective multicentre clinical trial and test the ability of spironolactone to delay progression of early diabetic nephropathy. Methods and analysis: Investigator-initiated, prospective multicentre clinical trial, with randomised double-masked placebo-controlled intervention and a prospective observational study. We aim to include 3280 type 2 diabetic participants with normoalbuminuria. The CKD273 classifier will be assessed in all participants. Participants with high-risk pattern are randomised to treatment with spironolactone 25 mg once daily, or placebo, whereas, those with low-risk pattern will be observed without intervention other than standard of care. Treatment or observational period is 3 years. The primary endpoint is development of confirmed microalbuminuria in 2 of 3 first morning voids urine samples. Ethics and dissemination: The study will be conducted under International Conference on Harmonisation – Good clinical practice (ICH-GCP) requirements, ethical principles of Declaration of Helsinki and national laws. This first new biomarker-directed intervention trial aiming at primary prevention of diabetic nephropathy may pave the way for personalised medicine approaches in treatment of diabetes complications
    corecore