144 research outputs found

    Bubbles on Manifolds with a U(1) Isometry

    Get PDF
    We investigate the construction of five-dimensional, three-charge supergravity solutions that only have a rotational U(1) isometry. We show that such solutions can be obtained as warped compactifications with a singular ambi-polar hyper-Kahler base space and singular warp factors. We show that the complete solution is regular around the critical surface of the ambi-polar base. We illustrate this by presenting the explicit form of the most general supersymmetric solutions that can be obtained from an Atiyah-Hitchin base space and its ambi-polar generalizations. We make a parallel analysis using an ambi-polar generalization of the Eguchi-Hanson base space metric. We also show how the bubbling procedure applied to the ambi-polar Eguchi-Hanson metric can convert it to a global AdS_2xS^3 compactification.Comment: 33 pages, 5 figures, LaTeX; references adde

    Descent Relations and Oscillator Level Truncation Method

    Get PDF
    We reexamine the oscillator level truncation method in the bosonic String Field Theory (SFT) by calculation the descent relation =Z_3<V_2|. For the ghost sector we use the fermionic vertices in the standard oscillator basis. We propose two new schemes for calculations. In the first one we assume that the insertion satisfies the overlap equation for the vertices and in the second one we use the direct calculations. In both schemes we get the correct structures of the exponent and pre-exponent of the vertex <V_2|, but we find out different normalization factors Z_3.Comment: 21 pages, 10 figures, Late

    An Infinite-Dimensional Family of Black-Hole Microstate Geometries

    Get PDF
    We construct the first explicit, smooth, horizonless black-hole microstate geometry whose moduli space is described by an arbitrary function of one variable and is thus infinite-dimensional. This is achieved by constructing the scalar Green function on a simple D6 anti-D6 background, and using this Green function to obtain the fully back-reacted solution for a supertube with varying charge density in this background. We show that this supertube can store parametrically more entropy than in flat space, confirming the entropy enhancement mechanism that was predicted using brane probes. We also show that all the local properties of the fully back-reacted solution can, in fact, be obtained using the DBI action of an appropriate brane probe. In particular, the supergravity and the DBI analysis yield identical functional bubble equations that govern the relative locations of the centers. This indicates that there is a non-renormalization theorem that protects these functional equations as one moves in moduli space. Our construction creates configurations that are beyond the scope of recent arguments that appear to put strong limits on the entropy that can be found in smooth supergravity solutions.Comment: 46 pages, 1 figure, LaTe

    Spinning Conformal Correlators

    Get PDF
    We develop the embedding formalism for conformal field theories, aimed at doing computations with symmetric traceless operators of arbitrary spin. We use an index-free notation where tensors are encoded by polynomials in auxiliary polarization vectors. The efficiency of the formalism is demonstrated by computing the tensor structures allowed in n-point conformal correlation functions of tensors operators. Constraints due to tensor conservation also take a simple form in this formalism. Finally, we obtain a perfect match between the number of independent tensor structures of conformal correlators in d dimensions and the number of independent structures in scattering amplitudes of spinning particles in (d+1)-dimensional Minkowski space.Comment: 46 pages, 3 figures; V2: references added; V3: tiny misprint corrected in (A.9

    Conformal symmetry in non-local field theories

    Full text link
    We have shown that a particular class of non-local free field theory has conformal symmetry in arbitrary dimensions. Using the local field theory counterpart of this class, we have found the Noether currents and Ward identities of the translation, rotation and scale symmetries. The operator product expansion of the energy-momentum tensor with quasi-primary fields is also investigated.Comment: 15 pages, V2 (Some references added) V3(published version

    Integrable Circular Brane Model and Coulomb Charging at Large Conduction

    Full text link
    We study a model of 2D QFT with boundary interaction, in which two-component massless Bose field is constrained to a circle at the boundary. We argue that this model is integrable at two values of the topological angle, θ=0\theta =0 and θ=π\theta=\pi. For θ=0\theta=0 we propose exact partition function in terms of solutions of ordinary linear differential equation. The circular brane model is equivalent to the model of quantum Brownian dynamics commonly used in describing the Coulomb charging in quantum dots, in the limit of small dimensionless resistance g0g_0 of the tunneling contact. Our proposal translates to partition function of this model at integer charge.Comment: 20 pages, minor change

    The alpha-prime stretched horizon in the Heterotic string

    Full text link
    The linear alpha-prime corrections and the field redefinition ambiguities are studied for half-BPS singular backgrounds representing a wrapped fundamental string. It is showed that there exist schemes in which the inclusion of all the linear alpha-prime corrections converts these singular solutions to black holes with a regular horizon for which the modified Hawking-Bekenstein entropy is in agreement with the statistical entropy.Comment: 22 pages JHEP; new discussions and more details added to section

    Effective Conformal Theory and the Flat-Space Limit of AdS

    Get PDF
    We develop the idea of an effective conformal theory describing the low-lying spectrum of the dilatation operator in a CFT. Such an effective theory is useful when the spectrum contains a hierarchy in the dimension of operators, and a small parameter whose role is similar to that of 1/N in a large N gauge theory. These criteria insure that there is a regime where the dilatation operator is modified perturbatively. Global AdS is the natural framework for perturbations of the dilatation operator respecting conformal invariance, much as Minkowski space naturally describes Lorentz invariant perturbations of the Hamiltonian. Assuming that the lowest-dimension single-trace operator is a scalar, O, we consider the anomalous dimensions, gamma(n,l), of the double-trace operators of the form O (del^2)^n (del)^l O. Purely from the CFT we find that perturbative unitarity places a bound on these dimensions of |gamma(n,l)|<4. Non-renormalizable AdS interactions lead to violations of the bound at large values of n. We also consider the case that these interactions are generated by integrating out a heavy scalar field in AdS. We show that the presence of the heavy field "unitarizes" the growth in the anomalous dimensions, and leads to a resonance-like behavior in gamma(n,l) when n is close to the dimension of the CFT operator dual to the heavy field. Finally, we demonstrate that bulk flat-space S-matrix elements can be extracted from the large n behavior of the anomalous dimensions. This leads to a direct connection between the spectrum of anomalous dimensions in d-dimensional CFTs and flat-space S-matrix elements in d+1 dimensions. We comment on the emergence of flat-space locality from the CFT perspective.Comment: 46 pages, 2 figures. v2: JHEP published versio

    Dirichlet sigma models and mean curvature flow

    Full text link
    The mean curvature flow describes the parabolic deformation of embedded branes in Riemannian geometry driven by their extrinsic mean curvature vector, which is typically associated to surface tension forces. It is the gradient flow of the area functional, and, as such, it is naturally identified with the boundary renormalization group equation of Dirichlet sigma models away from conformality, to lowest order in perturbation theory. D-branes appear as fixed points of this flow having conformally invariant boundary conditions. Simple running solutions include the paper-clip and the hair-pin (or grim-reaper) models on the plane, as well as scaling solutions associated to rational (p, q) closed curves and the decay of two intersecting lines. Stability analysis is performed in several cases while searching for transitions among different brane configurations. The combination of Ricci with the mean curvature flow is examined in detail together with several explicit examples of deforming curves on curved backgrounds. Some general aspects of the mean curvature flow in higher dimensional ambient spaces are also discussed and obtain consistent truncations to lower dimensional systems. Selected physical applications are mentioned in the text, including tachyon condensation in open string theory and the resistive diffusion of force-free fields in magneto-hydrodynamics.Comment: 77 pages, 21 figure

    Holographic anatomy of fuzzballs

    Get PDF
    We present a comprehensive analysis of 2-charge fuzzball solutions, that is, horizon-free non-singular solutions of IIB supergravity characterized by a curve on R^4. We propose a precise map that relates any given curve to a specific superposition of R ground states of the D1-D5 system. To test this proposal we compute the holographic 1-point functions associated with these solutions, namely the conserved charges and the vacuum expectation values of chiral primary operators of the boundary theory, and find perfect agreement within the approximations used. In particular, all kinematical constraints are satisfied and the proposal is compatible with dynamical constraints although detailed quantitative tests would require going beyond the leading supergravity approximation. We also discuss which geometries may be dual to a given R ground state. We present the general asymptotic form that such solutions must have and present exact solutions which have such asymptotics and therefore pass all kinematical constraints. Dynamical constraints would again require going beyond the leading supergravity approximation.Comment: 87 pages, begins with 10 page self contained summary of results;v2:JHEP version; v3: typos corrected, see in particular formula D.1
    • …
    corecore