30 research outputs found

    A Human Development Framework for CO2 Reductions

    Get PDF
    Although developing countries are called to participate in CO2 emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI) and per capita CO2 emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO2 emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU). If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8). In particular, 300Gt of cumulative CO2 emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20% to 30% of previously calculated CO2 budgets limiting global warming to 2{\deg}C. These constraints and results are incorporated into a CO2 reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2{\deg}C target after a particular development threshold is reached. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100Gt of CO2. These values are within the uncertainty range of emissions to limit global temperatures to 2{\deg}C.Comment: 14 pages, 7 figures, 1 tabl

    Defining pathways to healthy sustainable urban development

    Get PDF
    Goals and pathways to achieve sustainable urban development have multiple interlinkages with human health and wellbeing. However, these interlinkages have not been examined in depth in recent discussions on urban sustainability and global urban science. This paper fills that gap by elaborating in detail the multiple links between urban sustainability and human health and by mapping research gaps at the interface of health and urban sustainability sciences. As researchers from a broad range of disciplines, we aimed to: 1) define the process of urbanization, highlighting distinctions from related concepts to support improved conceptual rigour in health research; 2) review the evidence linking health with urbanization, urbanicity, and cities and identify cross-cutting issues; and 3) highlight new research approaches needed to study complex urban systems and their links with health. This novel, comprehensive knowledge synthesis addresses issue of interest across multiple disciplines. Our review of concepts of urban development should be of particular value to researchers and practitioners in the health sciences, while our review of the links between urban environments and health should be of particular interest to those outside of public health. We identify specific actions to promote health through sustainable urban development that leaves no one behind, including: integrated planning; evidence-informed policy-making; and monitoring the implementation of policies. We also highlight the critical role of effective governance and equity-driven planning in progress towards sustainable, healthy, and just urban development

    Learning perceptually grounded word meanings from unaligned parallel data

    Get PDF
    In order for robots to effectively understand natural language commands, they must be able to acquire meaning representations that can be mapped to perceptual features in the external world. Previous approaches to learning these grounded meaning representations require detailed annotations at training time. In this paper, we present an approach to grounded language acquisition which is capable of jointly learning a policy for following natural language commands such as “Pick up the tire pallet,” as well as a mapping between specific phrases in the language and aspects of the external world; for example the mapping between the words “the tire pallet” and a specific object in the environment. Our approach assumes a parametric form for the policy that the robot uses to choose actions in response to a natural language command that factors based on the structure of the language. We use a gradient method to optimize model parameters. Our evaluation demonstrates the effectiveness of the model on a corpus of commands given to a robotic forklift by untrained users.U.S. Army Research Laboratory (Collaborative Technology Alliance Program, Cooperative Agreement W911NF-10-2-0016)United States. Office of Naval Research (MURIs N00014-07-1-0749)United States. Army Research Office (MURI N00014-11-1-0688)United States. Defense Advanced Research Projects Agency (DARPA BOLT program under contract HR0011-11-2-0008

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure

    Entropy of dynamical social networks

    Get PDF
    Human dynamical social networks encode information and are highly adaptive. To characterize the information encoded in the fast dynamics of social interactions, here we introduce the entropy of dynamical social networks. By analysing a large dataset of phone-call interactions we show evidence that the dynamical social network has an entropy that depends on the time of the day in a typical week-day. Moreover we show evidence for adaptability of human social behavior showing data on duration of phone-call interactions that significantly deviates from the statistics of duration of face-to-face interactions. This adaptability of behavior corresponds to a different information content of the dynamics of social human interactions. We quantify this information by the use of the entropy of dynamical networks on realistic models of social interactions

    Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine

    Get PDF
    Bioorthogonal chemistry has become one of the main driving forces in current chemical biology, inspiring the search for novel biocompatible chemospecific reactions for the past decade. Alongside the well-established labeling strategies that originated the bioorthogonal paradigm, we have recently proposed the use of heterogeneous palladium chemistry and bioorthogonal Pd<sup>0</sup>-labile prodrugs to develop spatially targeted therapies. Herein, we report the generation of biologically inert precursors of cytotoxic gemcitabine by introducing Pd<sup>0</sup>-cleavable groups in positions that are mechanistically relevant for gemcitabine’s pharmacological activity. Cell viability studies in pancreatic cancer cells showed that carbamate functionalization of the 4-amino group of gemcitabine significantly reduced (>23-fold) the prodrugs’ cytotoxicity. The <i>N</i>-propargyloxycarbonyl (<i>N</i>-Poc) promoiety displayed the highest sensitivity to heterogeneous palladium catalysis under biocompatible conditions, with a reaction half-life of less than 6 h. Zebrafish studies with allyl, propargyl, and benzyl carbamate-protected rhodamines confirmed <i>N</i>-Poc as the most suitable masking group for implementing <i>in vivo</i> bioorthogonal organometallic chemistry
    corecore