56 research outputs found

    Kyphosis and paraspinal muscle composition in older men: a cross-sectional study for the osteoporotic fractures in men (MrOS) research group

    Get PDF
    BACKGROUND: The prevalence of hyperkyphosis is increased in older men; however, risk factors other than age and vertebral fractures are not well established. We previously reported that poor paraspinal muscle composition contributes to more severe kyphosis in a cohort of both older men and women. METHODS: To specifically evaluate this association in older men, we conducted a cross-sectional study to evaluate the association of paraspinal muscle composition and degree of thoracic kyphosis in an analytic cohort of 475 randomly selected participants from the Osteoporotic Fractures in Men (MrOS) study with baseline abdominal quantitative computed tomography (QCT) scans and plain thoracic radiographs. Baseline abdominal QCT scans were used to obtain abdominal body composition measurements of paraspinal muscle and adipose tissue distribution. Supine lateral spine radiographs were used to measure Cobb angle of kyphosis. We examined the linear association of muscle volume, fat volume and kyphosis using loess plots. Multivariate linear models were used to investigate the association between muscle and kyphosis using total muscle volume, as well as individual components of the total muscle volume, including adipose and muscle compartments alone, controlling for age, height, vertebral fractures, and total hip bone mineral density (BMD). We examined these associations among those with no prevalent vertebral fracture and those with BMI < 30 kg/m(2). RESULTS: Among men in the analytic cohort, means (SD) were 74 (SD = 5.9) years for age, and 37.5 (SD = 11.9) degrees for Cobb angle of kyphosis. Men in the lowest tertile of total paraspinal muscle volume had greater mean Cobb angle than men in the highest tertile, although test of linear trend across tertiles did not reach statistical significance. Neither lower paraspinal skeletal muscle volume (p-trend = 0.08), or IMAT (p-trend = 0.96) was associated with greater kyphosis. Results were similar among those with no prevalent vertebral fractures. However, among men with BMI < 30 kg/m(2), those in the lowest tertile of paraspinal muscle volume had greater adjusted mean kyphosis (40.0, 95% CI: 37.8 – 42.1) compared to the highest tertile (36.3, 95% CI: 34.2 – 38.4). CONCLUSIONS: These results suggest that differences in body composition may potentially influence kyphosis

    The regulation and function of C. elgans flavin-containing monooxygenase-2

    No full text
    Thesis (Ph.D.)--University of Washington, 2021In the last one hundred years, aging has become an increasingly tractable problem. The pioneering dietary restriction experiments of the 1920s and '30s, the robust evolutionary and molecular theories of the 1950s -'70s, and the identification of conserved longevity genes in the 1980s – 2000s all paved the way for the aging research field's current rapid expansion and mainstream traction. Along with metformin, senolytics, and numerous other promising avenues, the field is still characterizing the molecular mechanisms through which major interventions like dietary restriction and the inhibition of insulin and mTOR signaling promote longevity. In this dissertation, I use the nematode roundworm model species Caenorhabditis elegans to define the regulation and function of the conserved pro-longevity target gene flavin-containing monooxygenase-2 (fmo-2). I find that both the regulation and function of fmo-2 is dependent on endogenous sulfur amino acid metabolism, placing fmo-2 at a nexus of redox, cellular energetics, and other processes central to aging

    VOCs Emissions from Multiple Wood Pellet Types and Concentrations in Indoor Air

    No full text
    Wood pellet storage safety is an important aspect for implementing woody biomass as a renewable energy source. When wood pellets are stored indoors in large quantities (tons) in poorly ventilated spaces in buildings, such as in basements, off-gassing of volatile organic compounds (VOCs) can significantly affect indoor air quality. To determine the emission rates and potential impact of VOC emissions, a series of laboratory and field measurements were conducted using softwood, hardwood, and blended wood pellets manufactured in New York. Evacuated canisters were used to collect air samples from the headspace of drums containing pellets and then in basements and pellet storage areas of homes and small businesses. Multiple peaks were identified during GC/MS and GC/FID analysis, and four primary VOCs were characterized and quantified: methanol, pentane, pentanal, and hexanal. Laboratory results show that total VOCs (TVOCs) concentrations for softwood (SW) were statistically (<i>p</i> < 0.02) higher than blended or hardwood (HW) (SW: 412 ± 25; blended: 203 ± 4; HW: 99 ± 8, ppb). The emission rate from HW was the fastest, followed by blended and SW, respectively. Emissions rates were found to range from 10<sup>–1</sup> to 10<sup>–5</sup> units, depending upon environmental factors. Field measurements resulted in airborne concentrations ranging from 67 ± 8 to 5000 ± 3000 ppb of TVOCs and 12 to 1500 ppb of aldehydes, with higher concentrations found in a basement with a large fabric bag storage unit after fresh pellet delivery and lower concentrations for aged pellets. These results suggest that large fabric bag storage units resulted in a substantial release of VOCs into the building air. Occupants of the buildings tested discussed concerns about odor and sensory irritation when new pellets were delivered. The sensory response was likely due to the aldehydes

    DDS promotes longevity through a microbiome-mediated starvation signal

    No full text
    The antibiotic diaminodiphenyl sulfone (DDS) is used in combination with other antibiotics as a first line treatment for leprosy. DDS has been previously reported to extend lifespan in Caenorhabditis elegans through inhibition of pyruvate kinase and decreased mitochondrial function. Here we report an alternative mechanism of action by which DDS promotes longevity in C. elegans by reducing folate production by the microbiome. This results in altered methionine cycle metabolite levels mimicking the effects of metformin and lifespan extension that is dependent on the starvation- and hypoxia-induced flavin containing monoxygenase, FMO-2. © 2019 KeAi Communications Co., Ltd1
    corecore