177 research outputs found

    Arts Funding Snapshot: GIA's Annual Research on Support for Arts and Culture, 2012

    Get PDF
    Includes: Foundation Grants to Arts and Culture, 2010: A One-year Snapshot, and Public Funding for the Arts: 2012 Updat

    Arts Funding Snapshot: GIA's Annual Research on Support for Arts and Culture, 2014

    Get PDF
    Foundation Center offers these key findings from GIA's thirteenth snapshot of foundation giving to arts and culture. The definition of arts and culture used for this snapshot is based on the National Taxonomy of Exempt Entities and encompasses funding for the performing arts, museums, visual arts, multidisciplinary arts, media and communications, humanities, and historical preservation. Most importantly, the findings tell us about the changes in foundation giving for the arts between 2011 and 2012 by a matched set of 714 funders and the distribution of 2012 arts and culture giving by the 1,000 largest US foundations by total giving.1 They are based on all arts grants of $10,000 or more reported to Foundation Center by these sets of the largest US foundations, hereafter referred to as "the sample".2 The Center has conducted annual examinations of the giving patterns of the nation's largest foundations for close to four decades

    Reception of Multiple Telemetry Signals via One Dish Antenna

    Get PDF
    A microwave aeronautical-telemetry receiver system includes an antenna comprising a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal dish reflector that is nominally aimed at a single aircraft or at multiple aircraft flying in formation. Through digital processing of the signals received by the seven feed horns, the system implements a method of enhanced cancellation of interference, such that it becomes possible to receive telemetry signals in the same frequency channel simultaneously from either or both of two aircraft at slightly different angular positions within the field of view of the antenna, even in the presence of multipath propagation. The present system is an advanced version of the system described in Spatio- Temporal Equalizer for a Receiving-Antenna Feed Array NPO-43077, NASA Tech Briefs, Vol. 34, No. 2 (February 2010), page 32. To recapitulate: The radio-frequency telemetry signals received by the seven elements of the array are digitized, converted to complex baseband form, and sent to a spatio-temporal equalizer that consists mostly of a bank of seven adaptive finite-impulse-response (FIR) filters (one for each element in the array) plus a unit that sums the outputs of the filters. The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank affords better multipath suppression performance than is achievable by means of temporal equalization alone. The FIR filter bank adapts itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of frequency-selective multipath propagation like that commonly found at flight-test ranges. The combination of the array and the filter bank makes it possible to constructively add multipath incoming signals to the corresponding directly arriving signals, thereby enabling reductions in telemetry bit-error rates

    Enchanced interference cancellation and telemetry reception in multipath environments with a single paraboic dish antenna using a focal plane array

    Get PDF
    An Advanced Focal Plane Array ("AFPA") for parabolic dish antennas that exploits spatial diversity to achieve better channel equalization performance in the presence of multipath (better than temporal equalization alone), and which is capable of receiving from two or more sources within a field-of-view in the presence of multipath. The AFPA uses a focal plane array of receiving elements plus a spatio-temporal filter that keeps information on the adaptive FIR filter weights, relative amplitudes and phases of the incoming signals, and which employs an Interference Cancelling Constant Modulus Algorithm (IC-CMA) that resolves multiple telemetry streams simultaneously from the respective aero-nautical platforms. This data is sent to an angle estimator to calculate the target's angular position, and then on to Kalman filters FOR smoothing and time series prediction. The resulting velocity and acceleration estimates from the time series data are sent to an antenna control unit (ACU) to be used for pointing control

    Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array

    Get PDF
    A spatio-temporal equalizer has been conceived as an improved means of suppressing multipath effects in the reception of aeronautical telemetry signals, and may be adaptable to radar and aeronautical communication applications as well. This equalizer would be an integral part of a system that would also include a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal antenna that would be nominally aimed at or near the aircraft that would be the source of the signal that one seeks to receive (see Figure 1). This spatio-temporal equalizer would consist mostly of a bank of seven adaptive finite-impulse-response (FIR) filters one for each element in the array - and the outputs of the filters would be summed (see Figure 2). The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank would afford better multipath-suppression performance than is achievable by means of temporal equalization alone. The seven-element feed array would supplant the single feed horn used in a conventional paraboloidal ground telemetry-receiving antenna. The radio-frequency telemetry signals re ceiv ed by the seven elements of the array would be digitized, converted to complex baseband form, and sent to the FIR filter bank, which would adapt itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of multipath of the type found at many flight test ranges

    Estimating Transmitted-Signal Phase Variations for Uplink Array Antennas

    Get PDF
    A method of estimating phase drifts of microwave signals distributed to, and transmitted by, antennas in an array involves the use of the signals themselves as phase references. The method was conceived as part of the solution of the problem of maintaining precise phase calibration required for proper operation of an array of Deep Space Network (DSN) antennas on Earth used for communicating with distant spacecraft at frequencies between 7 and 8 GHz. The method could also be applied to purely terrestrial phased-array radar and other radio antenna array systems. In the DSN application, the electrical lengths (effective signal-propagation path lengths) of the various branches of the system for distributing the transmitted signals to the antennas are not precisely known, and they vary with time. The variations are attributable mostly to thermal expansion and contraction of fiber-optic and electrical signal cables and to a variety of causes associated with aging of signal-handling components. The variations are large enough to introduce large phase drifts at the signal frequency. It is necessary to measure and correct for these phase drifts in order to maintain phase calibration of the antennas. A prior method of measuring phase drifts involves the use of reference-frequency signals separate from the transmitted signals. A major impediment to accurate measurement of phase drifts over time by the prior method is the fact that although DSN reference-frequency sources separate from the transmitting signal sources are stable and accurate enough for most DSN purposes, they are not stable enough for use in maintaining phase calibrations, as required, to within a few degrees over times as long as days or possibly even weeks. By eliminating reliance on the reference-frequency subsystem, the present method overcomes this impediment. In a DSN array to which the present method applies (see figure), the microwave signals to be transmitted are generated by exciters in a signal-processing center, then distributed to the antennas via optical fibers. At each antenna, the signals are used to drive a microwave power-amplifier train, the output of which is coupled to the antenna for transmission. A small fraction of the power-amplifier-train output is sent back to the signal-processing center along another optical fiber that is part of the same fiber-optic cable used to distribute the transmitted signal to the antenna. In the signal-processing center, the signal thus returned from each antenna is detected and its phase is compared with the phase of the signal sampled directly from the corresponding exciter. It is known, from other measurements, that the signal-propagation path length from the power-amplifier-train output port to the phase center of each antenna is sufficiently stable and, hence, that sampling the signal at the power-amplifier-train output port suffices for the purpose of characterizing the phase drift of the transmitted signal at the phase center of the antenn

    RNA interference of gonadotropin-inhibitory hormone gene induces arousal in songbirds.

    Get PDF
    Gonadotropin-inhibitory hormone (GnIH) was originally identified in quail as a hypothalamic neuropeptide inhibitor of pituitary gonadotropin synthesis and release. However, GnIH neuronal fibers do not only terminate in the median eminence to control anterior pituitary function but also extend widely in the brain, suggesting it has multiple roles in the regulation of behavior. To identify the role of GnIH neurons in the regulation of behavior, we investigated the effect of RNA interference (RNAi) of the GnIH gene on the behavior of white-crowned sparrows, a highly social songbird species. Administration of small interfering RNA against GnIH precursor mRNA into the third ventricle of male and female birds reduced resting time, spontaneous production of complex vocalizations, and stimulated brief agonistic vocalizations. GnIH RNAi further enhanced song production of short duration in male birds when they were challenged by playbacks of novel male songs. These behaviors resembled those of breeding birds during territorial defense. The overall results suggest that GnIH gene silencing induces arousal. In addition, the activities of male and female birds were negatively correlated with GnIH mRNA expression in the paraventricular nucleus. Density of GnIH neuronal fibers in the ventral tegmental area was decreased by GnIH RNAi treatment in female birds, and the number of gonadotropin-releasing hormone neurons that received close appositions of GnIH neuronal fiber terminals was negatively correlated with the activity of male birds. In summary, GnIH may decrease arousal level resulting in the inhibition of specific motivated behavior such as in reproductive contexts

    Strategic analysis for the MER Cape Verde approach

    Get PDF
    The Mars Exploration Rover Opportunity has recently completed a two year campaign studying Victoria Crater. The campaign culminated in a close approach of Cape Verde in order to acquire high resolution imagery of the exposed stratigraphy in the cliff face. The close approach to Cape Verde provided significant challenges for every subsystem of the rover as the rover needed to traverse difficult, un-characterised terrain and approach a cliff face with the potential of blocking out solar energy and communications with Earth. In this paper we describe the strategic analyses performed by the science and engineering teams so that we could successfully achieve the science objectives while keeping the rover safe

    Dust in Comet C/2007 N3 (Lulin)

    Full text link
    We report optical imaging, optical and near-infrared polarimetry, and Spitzer mid-infrared spectroscopy of comet C/2007 N3 (Lulin). Polarimetric observations were obtained in R (0.676 micron) at phase angles from 0.44 degrees to 21 degrees with simultaneous observations in H (1.65 micron) at 4.0 degrees, exploring the negative branch in polarization. Comet C/2007 N3 (Lulin) shows typical negative polarization in the optical as well as a similar negative branch near-infrared wavelengths. The 10 micron silicate feature is only weakly in emission and according to our thermal models, is consistent with emission from a mixture of silicate and carbon material. We argue that large, low-porosity (akin to Ballistic Particle Cluster Aggregates) rather absorbing aggregate dust particles best explain both the polarimetric and the mid-infrared spectral energy distribution.Comment: 18 pages, 9 figures, 3 table
    • …
    corecore