3,070 research outputs found

    2014 Fed Challenge Script: Current State of the Economy

    Full text link
    Good afternoon everyone and thank you for having us here today. Though the recession began in 2007 and officially ended in 2009, recovery has been painfully slow. GDP growth has been insufficient to close the output gap, there continues to be slack in the labor market and inflation has stabilized below the Federal Reserve percent target. We are not meeting our dual mandate of full employment and stable prices even 6 years after the end of the recession. Despite some signs of strengthening in the economy during the past year, we do not believe that economy is on a self-sustaining path of recovery. Furthermore, the monetary policy actions taken by the Fed thus far to pull us out of the Great Recession have been insufficient. We propose a substantial strengthening of the our forward guidance; specifically, a commitment not to raise the federal funds rate until nominal GDP has returned to a path that we consider consistent with the dual mandate. [excerpt

    Selection of chromosomal DNA libraries using a multiplex CRISPR system.

    Get PDF
    The directed evolution of biomolecules to improve or change their activity is central to many engineering and synthetic biology efforts. However, selecting improved variants from gene libraries in living cells requires plasmid expression systems that suffer from variable copy number effects, or the use of complex marker-dependent chromosomal integration strategies. We developed quantitative gene assembly and DNA library insertion into the Saccharomyces cerevisiae genome by optimizing an efficient single-step and marker-free genome editing system using CRISPR-Cas9. With this Multiplex CRISPR (CRISPRm) system, we selected an improved cellobiose utilization pathway in diploid yeast in a single round of mutagenesis and selection, which increased cellobiose fermentation rates by over 10-fold. Mutations recovered in the best cellodextrin transporters reveal synergy between substrate binding and transporter dynamics, and demonstrate the power of CRISPRm to accelerate selection experiments and discoveries of the molecular determinants that enhance biomolecule function

    Spin effects in gravitational radiation backreaction III. Compact binaries with two spinning components

    Full text link
    The secular evolution of a spinning, massive binary system in eccentric orbit is analyzed, expanding and generalizing our previous treatments of the Lense-Thirring motion and the one-spin limit. The spin-orbit and spin-spin effects up to the 3/2 post-Newtonian order are considered, both in the equations of motion and in the radiative losses. The description of the orbit in terms of the true anomaly parametrization provides a simple averaging technique, based on the residue theorem, over eccentric orbits. The evolution equations of the angle variables characterizing the relative orientation of the spin and orbital angular momenta reveal a speed-up effect due to the eccentricity. The dissipative evolutions of the relevant dynamical and angular variables is presented in the form of a closed system of differential equations.Comment: 10 pages, 1 figur

    Corporate governance and financial constraints on strategic turnarounds

    Get PDF
    The paper extends the Robbins and Pearce (1992) two-stage turnaround response model to include governance factors. In addition to the retrenchment and recovery, the paper proposes the addition of a realignment stage, referring specifically to the re-alignment of expectations of principal and agent groups. The realignment stage imposes a threshold that must be crossed before the retrenchment and hence recovery stage can be entered. Crossing this threshold is problematic to the extent that the interests of governance-stakeholder groups diverge in a crisis situation. The severity of the crisis impacts on the bases of strategy contingent asset valuation leading to the fragmentation of stakeholder interests. In some cases the consequence may be that management are prevented from carrying out turnarounds by governance constraints. The paper uses a case study to illustrate these dynamics, and like the Robbins and Pearce study, it focuses on the textile industry. A longitudinal approach is used to show the impact of the removal of governance constraints. The empirical evidence suggests that such financial constraints become less serious to the extent that there is a functioning market for corporate control. Building on governance research and turnaround literature, the paper also outlines the general case necessary and sufficient conditions for successful turnarounds

    Metal enrichment processes

    Full text link
    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 17; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    Treatment planning comparison in the PROTECT-trial randomising proton versus photon beam therapy in oesophageal cancer:Results from eight European centres

    Get PDF
    PURPOSE To compare dose distributions and robustness in treatment plans from eight European centres in preparation for the European randomized phase-III PROTECT-trial investigating the effect of proton therapy (PT) versus photon therapy (XT) for oesophageal cancer. MATERIALS AND METHODS All centres optimized one PT and one XT nominal plan using delineated 4DCT scans for four patients receiving 50.4 Gy (RBE) in 28 fractions. Target volume receiving 95% of prescribed dose (V95%iCTVtotal) should be >99%. Robustness towards setup, range, and respiration was evaluated. The plans were recalculated on a surveillance 4DCT (sCT) acquired at fraction ten and robustness evaluation was performed to evaluate the effect of respiration and inter-fractional anatomical changes. RESULTS All PT and XT plans complied with V95%iCTVtotal >99% for the nominal plan and V95%iCTVtotal >97% for all respiratory and robustness scenarios. Lung and heart dose varied considerably between centres for both modalities. The difference in mean lung dose and mean heart dose between each pair of XT and PT plans was in median [range] 4.8 Gy [1.1;7.6] and 8.4 Gy [1.9;24.5], respectively. Patients B and C showed large inter-fractional anatomical changes on sCT. For patient B, the minimum V95%iCTVtotal in the worst-case robustness scenario was 45% and 94% for XT and PT, respectively. For patient C, the minimum V95%iCTVtotal was 57% and 72% for XT and PT, respectively. Patient A and D showed minor inter-fractional changes and the minimum V95%iCTVtotal was >85%. CONCLUSION Large variability in dose to the lungs and heart was observed for both modalities. Inter-fractional anatomical changes led to larger target dose deterioration for XT than PT plans

    Investigating the Atmospheric Mass Loss of the Kepler-105 Planets Straddling the Radius Gap

    Full text link
    An intriguing pattern among exoplanets is the lack of detected planets between approximately 1.51.5 R⊕_\oplus and 2.02.0 R⊕_\oplus. One proposed explanation for this "radius gap" is the photoevaporation of planetary atmospheres, a theory that can be tested by studying individual planetary systems. Kepler-105 is an ideal system for such testing due to the ordering and sizes of its planets. Kepler-105 is a sun-like star that hosts two planets straddling the radius gap in a rare architecture with the larger planet closer to the host star (Rb=2.53±0.07R_b = 2.53\pm0.07 R⊕_\oplus, Pb=5.41P_b = 5.41 days, Rc=1.44±0.04R_c = 1.44\pm0.04 R⊕_\oplus, Pc=7.13P_c = 7.13 days). If photoevaporation sculpted the atmospheres of these planets, then Kepler-105b would need to be much more massive than Kepler-105c to retain its atmosphere, given its closer proximity to the host star. To test this hypothesis, we simultaneously analyzed radial velocities (RVs) and transit timing variations (TTVs) of the Kepler-105 system, measuring disparate masses of Mb=10.8±2.3M_b = 10.8\pm2.3 M⊕_\oplus (ρb=0.97±0.22 \rho_b = 0.97\pm0.22 g cm−3^{-3}) and Mc=5.6±1.2M_c = 5.6\pm1.2 M⊕_\oplus (ρc=2.64±0.61\rho_c = 2.64\pm0.61 g cm−3^{-3}). Based on these masses, the difference in gas envelope content of the Kepler-105 planets could be entirely due to photoevaporation (in 76\% of scenarios), although other mechanisms like core-powered mass loss could have played a role for some planet albedos.Comment: 14 pages, 3 figures, 2 table

    Searching for gravitational waves from known pulsars

    Get PDF
    We present upper limits on the amplitude of gravitational waves from 28 isolated pulsars using data from the second science run of LIGO. The results are also expressed as a constraint on the pulsars' equatorial ellipticities. We discuss a new way of presenting such ellipticity upper limits that takes account of the uncertainties of the pulsar moment of inertia. We also extend our previous method to search for known pulsars in binary systems, of which there are about 80 in the sensitive frequency range of LIGO and GEO 600.Comment: Accepted by CQG for the proceeding of GWDAW9, 7 pages, 2 figure

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 10−2210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200
    • 

    corecore