5,201 research outputs found

    A Qualitative Approach to Spiral of Silence Research: Self-Censorship Narratives Regarding Environmental and Social Conflict

    Get PDF
    The purpose of this research is to seek narratives of self-censorship from in-depth interviews of 19 participants acquired through a purposive (criterion) sampling protocol. The primary research question driving this study is “What types of sanctions contribute to people choosing to self-censor their strongly held beliefs, values, and opinions.” Previous research conducted on the topic of self-censorship (generally under the rubric of the spiral of silence theory) has been predominantly quantitative and consideration of sanctions influencing self-censorship have been limited to fear of social isolation. I suggest that ostensibly important sanction variables have not been utilized within these existing frameworks. I anticipated that this research, by utilizing a qualitative framework, would reveal other sanctions that operate in the self-censorship decision calculus. I also expected that interviews would portray a broader, more complete picture of how self-censorship operates and the variables that contribute to the construct. Research expectations were partially met as new variables in regard to specific fears of sanctioning were identified. These variables should contribute to self-censorship theory and more specifically, the frequently researched “spiral of silence” theory of mass communication and could be tested in quantitative research to verify their validity. Future research in this vein might consider testing additional sanction variables as part of a quantitative study, continue to refine the definition of self-censorship, develop better strategies to locate and secure additional informants, and continue to utilize qualitative methods to probe further into self-censorship questions

    Dante and Aquinas

    Get PDF
    Christopher Ryan’s study of Dante and Aquinas, touching on issues of nature and grace, of explicit and implicit faith, and of desire and destiny, is intended to mark the difference between them in key areas of theological sensibility. Re-shaped and revised by John Took on the basis of papers made available to him from Christopher Ryan’s estate, it seeks to deepen our understanding of one of the great cultural encounters in European letters. (DOI: 10.5334/bad

    Lessons learned from CHMP2B, implications for frontotemporal dementia and amyotrophic lateral sclerosis.

    Get PDF
    Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are two neurodegenerative diseases with clinical, genetic and pathological overlap. As such, they are commonly regarded as a single spectrum disorder, with pure FTD and pure ALS representing distinct ends of a continuum. Dysfunctional endo-lysosomal and autophagic trafficking, leading to impaired proteostasis is common across the FTD-ALS spectrum. These pathways are, in part, mediated by CHMP2B, a protein that coordinates membrane scission events as a core component of the ESCRT machinery. Here we review how ALS and FTD disease causing mutations in CHMP2B have greatly contributed to our understanding of how endosomal-lysosomal and autophagic dysfunction contribute to neurodegeneration, and how in vitro and in vivo models have helped elucidate novel candidates for potential therapeutic intervention with implications across the FTD-ALS spectrum

    Genetic structure of community acquired methicillin-resistant Staphylococcus aureus USA300.

    Get PDF
    BackgroundCommunity-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is a significant bacterial pathogen that poses considerable clinical and public health challenges. The majority of the CA-MRSA disease burden consists of skin and soft tissue infections (SSTI) not associated with significant morbidity; however, CA-MRSA also causes severe, invasive infections resulting in significant morbidity and mortality. The broad range of disease severity may be influenced by bacterial genetic variation.ResultsWe sequenced the complete genomes of 36 CA-MRSA clinical isolates from the predominant North American community acquired clonal type USA300 (18 SSTI and 18 severe infection-associated isolates). While all 36 isolates shared remarkable genetic similarity, we found greater overall time-dependent sequence diversity among SSTI isolates. In addition, pathway analysis of non-synonymous variations revealed increased sequence diversity in the putative virulence genes of SSTI isolates.ConclusionsHere we report the first whole genome survey of diverse clinical isolates of the USA300 lineage and describe the evolution of the pathogen over time within a defined geographic area. The results demonstrate the close relatedness of clinically independent CA-MRSA isolates, which carry implications for understanding CA-MRSA epidemiology and combating its spread

    A UV to Mid-IR Study of AGN Selection

    Get PDF
    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 sq. deg Bootes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC/MIPS) data, as well as spectroscopic redshifts for ~20,000 objects, primarily from the AGN and Galaxy Evolution Survey (AGES). We fit galaxy, AGN, stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are sigma/(1+z)=0.040 and sigma/(1+z)=0.169, respectively, with the worst 5% outliers excluded. Based on the reduced chi-squared of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I=23.5. We compare the SED fits for a galaxy-only model and a galaxy+AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGN, including spatially resolved AGN with significant contributions from the host galaxy and objects with the emission line ratios of "composite" spectra. We also use our results to compare to the X-ray, mid-IR, optical color and emission line ratio selection techniques. For an F-ratio threshold of F>10 we find 16,266 AGN candidates brighter than I=23.5 and a surface density of ~1900 AGN per deg^2.Comment: Submitted to ApJ, 35 pages, 17 figures, 2 table

    Turbulent Scalar Mixing in a Skewed Jet in Crossflow: Experiments and Modeling

    Get PDF
    Turbulent mixing of an inclined, skewed jet injected into a crossflow is investigated using MRI-based experiments and a high-fidelity LES of the same configuration. The MRI technique provides three-dimensional fields of mean velocity and mean jet concentration. The 30° skew of the jet relative to the crossflow produces a single dominant vortex which introduces spanwise asymmetries to the velocity and concentration fields. The turbulent scalar transport of the skewed jet is investigated in further detail using the LES, which is validated against the experimental measurements. Mixing is found to be highly anisotropic throughout the jet region. Isotropic turbulent diffusivity and viscosity are used to calculate an optimal value of the turbulent Schmidt number, which varies widely over the jet region and lies mostly outside of the typically accepted range 0.7 ≤ Sct ≤ 0.9. Finally, three common scalar flux models of increasing complexity are evaluated based on their ability to capture the anisotropy and predict the scalar concentration field of the present configuration. The higher order models are shown to better represent the turbulent scalar flux vector, leading to more accurate calculations of the concentration field. While more complex models are better able to capture the turbulent mixing, optimization of model constants is shown to significantly affect the results

    Roton immiscibility in a two-component dipolar Bose gas

    Full text link
    We characterize the immiscibility-miscibility transition (IMT) of a two-component Bose-Einstein condensate (BEC) with dipole-dipole interactions. In particular, we consider the quasi-two dimensional geometry, where a strong trapping potential admits only zero-point motion in the trap direction, while the atoms are more free to move in the transverse directions. We employ the Bogoliubov treatment of the two-component system to identify both the well-known long-wavelength IMT in addition to a roton-like IMT, where the transition occurs at finite-wave number and is reminiscent of the roton softening in the single component dipolar BEC. Additionally, we verify the existence of the roton IMT in the fully trapped, finite systems by direct numerical simulation of the two-component coupled non-local Gross-Pitaevskii equations.Comment: 13 pages, 2 columns, 9 figure
    • …
    corecore