45 research outputs found

    Filming protein fibrillogenesis in real time

    Get PDF
    Protein fibrillogenesis is a universal tool of nano-to-micro scale construction supporting different forms of biological function. Its exploitable potential in nanoscience and technology is substantial, but the direct observation of homogeneous fibre growth able to underpin a kinetic-based rationale for building customized nanostructures in situ is lacking. Here we introduce a kinetic model of de novo protein fibrillogenesis which we imaged at the nanoscale and in real time, filmed. The model helped to reveal that, in contrast to heterogeneous amyloid assemblies, homogeneous protein recruitment is principally characterized by uniform rates of cooperative growth at both ends of growing fibers, bi-directional growth, with lateral growth arrested at a post-seeding stage. The model provides a foundation for in situ engineering of sequence-prescribed fibrous architectures

    Cicada-inspired cell-instructive nanopatterned arrays

    Get PDF
    Biocompatible surfaces hold key to a variety of biomedical problems that are directly related to the competition between host-tissue cell integration and bacterial colonisation. A saving solution to this is seen in the ability of cells to uniquely respond to physical cues on such surfaces thus prompting the search for cell-instructive nanoscale patterns. Here we introduce a generic rationale engineered into biocompatible, titanium, substrates to differentiate cell responses. The rationale is inspired by cicada wing surfaces that display bactericidal nanopillar patterns. The surfaces engineered in this study are titania (TiO(2)) nanowire arrays that are selectively bactericidal against motile bacteria, while capable of guiding mammalian cell proliferation according to the type of the array. The concept holds promise for clinically relevant materials capable of differential physico-mechanical responses to cellular adhesion

    Insulin aggregation tracked by its intrinsic TRES

    Get PDF
    Time-resolved emission spectra (TRES) have been used to detect conformational changes of intrinsic tyrosines within bovine insulin at a physiological pH. The approach offers the ability to detect the initial stages of insulin aggregation at the molecular level. The data analysis has revealed the existence of at least three fluorescent species undergoing dielectric relaxation and significant spectral changes due to insulin aggregation. The results indicate the suitability of the intrinsic TRES approach for insulin studies and for monitoring its stability during storage and aggregation in insulin delivery devices

    Protein fibrillogenesis model tracked by its intrinsic time-resolved emission spectra

    Get PDF
    The excited-state kinetics of the fluorescence of tyrosine in a de novo protein fibrillogenesis model was investigated as a potential tool for monitoring protein fibre formation and complexation with glucose (glycation). In stark contrast to insulin the time-resolved emission spectra (TRES) recorded over the period of 700 hours in buffered solutions of the model with and without glucose revealed no apparent changes in Tyr fluorescence responses. This indicates the stability of the model and provides a measurement-supported basis for its use as a reference material in fluorescence studies of protein aggregation

    Tracking insulin glycation in real time by time-resolved emission spectroscopy

    Get PDF
    The application of time-resolved fluorescence sensing to the study of heterogenic biomolecular systems remains challenging because of the complexity of the resulting photophysics. Measuring the time-resolved emission spectroscopy (TRES) spectra can provide a more informative alternative to the modeling of the fluorescence decay that is currently employed. Here, we demonstrate this approach by monitoring real-time changes in intrinsic insulin fluorescence by TRES as a straightforward probe to directly measure kinetics of insulin aggregation and glycation. Our findings hold promise for monitoring the storage of insulin and its application in the control of diabetes and may support the development of more effective therapeutics against amyloidosis

    An ultrasensitive microfluidic approach reveals correlations between the physico-chemical and biological activity of experimental peptide antibiotics.

    Get PDF
    Funder: Winton Programme for the Physics of SustainabilityFunder: Cambridge-NPL studentshipFunder: Trinity-Henry Barlow ScholarshipFunder: Department for Business, Energy and Industrial Strategy, UK Government; doi: http://dx.doi.org/10.13039/100011693Antimicrobial resistance challenges the ability of modern medicine to contain infections. Given the dire need for new antimicrobials, polypeptide antibiotics hold particular promise. These agents hit multiple targets in bacteria starting with their most exposed regions-their membranes. However, suitable approaches to quantify the efficacy of polypeptide antibiotics at the membrane and cellular level have been lacking. Here, we employ two complementary microfluidic platforms to probe the structure-activity relationships of two experimental series of polypeptide antibiotics. We reveal strong correlations between each peptide's physicochemical activity at the membrane level and biological activity at the cellular level. We achieve this knowledge by assaying the membranolytic activities of the compounds on hundreds of individual giant lipid vesicles, and by quantifying phenotypic responses within clonal bacterial populations with single-cell resolution. Our strategy proved capable of detecting differential responses for peptides with single amino acid substitutions between them, and can accelerate the rational design and development of peptide antimicrobials

    Membrane binding of antimicrobial peptides is modulated by lipid charge modification

    Get PDF
    Peptide interactions with lipid bilayers play a key role in a range of biological processes and depend on electrostatic interactions between charged amino acids and lipid headgroups. Antimicrobial peptides (AMPs) initiate the killing of bacteria by binding to and destabilizing their membranes. The multiple peptide resistance factor (MprF) provides a defense mechanism for bacteria against a broad range of AMPs. MprF reduces the negative charge of bacterial membranes through enzymatic conversion of the anionic lipid phosphatidyl glycerol (PG) to either zwitterionic alanyl-phosphatidyl glycerol (Ala-PG) or cationic lysyl-phosphatidyl glycerol (Lys-PG). The resulting change in the membrane charge is suggested to reduce the binding of AMPs to membranes, thus impeding downstream AMP activity. Using coarse-grained molecular dynamics to investigate the effects of these modified lipids on AMP binding to model membranes, we show that AMPs have substantially reduced affinity for model membranes containing Ala-PG or Lys-PG. More than 5000 simulations in total are used to define the relationship between lipid bilayer composition, peptide sequence (using five different membrane-active peptides), and peptide binding to membranes. The degree of interaction of a peptide with a membrane correlates with the membrane surface charge density. Free energy profile (potential of mean force) calculations reveal that the lipid modifications due to MprF alter the energy barrier to peptide helix penetration of the bilayer. These results will offer a guide to the design of novel peptides, which addresses the issue of resistance via MprF-mediated membrane modification
    corecore