8 research outputs found

    Phylogeny and Diversification Patterns among Vesicomyid Bivalves

    Get PDF
    Vesicomyid bivalves are among the most abundant and diverse symbiotic taxa in chemosynthetic-based ecosystems: more than 100 different vesicomyid species have been described so far. In the present study, we investigated the phylogenetic positioning of recently described vesicomyid species from the Gulf of Guinea and their western Atlantic and Pacific counterparts using mitochondrial DNA sequence data. The maximum-likelihood (ML) tree provided limited support for the recent taxonomic revision of vesicomyids based on morphological criteria; nevertheless, most of the newly sequenced specimens did not cluster with their morphological conspecifics. Moreover, the observed lack of geographic clustering suggests the occurrence of independent radiations followed by worldwide dispersal. Ancestral character state reconstruction showed a significant correlation between the characters “depth” and “habitat” and the reconstructed ML phylogeny suggesting possible recurrent events of ‘stepwise speciation’ from shallow to deep waters in different ocean basins. This is consistent with genus or species bathymetric segregation observed from recent taxonomic studies. Altogether, our results highlight the need for ongoing re-evaluation of the morphological characters used to identify vesicomyid bivalves

    The smaller vesicomyid bivalves in the genus Isorropodon (Bivalvia, Vesicomyidae, Pliocardiinae) also harbour chemoautotrophic symbionts

    Get PDF
    Species of Isorropodon are vesicomyid bivalves for which little information is available regarding host phylogeny and bacterial symbioses. In this study we investigated the symbioses in three Isorropodon species from three cold seep areas: Isorropodon bigoti (Gulf of Guinea), Isorropodon megadesmus (Gulf of Cadiz) and Isorropodon perplexum (Eastern Mediterranean). Analysis of bacterial 16S ribosomal RNA gene sequences demonstrated that each vesicomyid species harbours a single symbiont phylotype, that symbionts from the three species cluster together, and that they are closely related to other known vesicomyid symbionts. These results are confirmed by other marker genes (encoding 23S rRNA and APS reductase) and by fluorescence in situ hybridization. Due to their extended depth range and transoceanic distribution Isorropodon species are interesting examples to further study evolutionary processes in bivalve hosts and their associated symbionts

    Phylogenetic and Morphologic Analyses of a Coastal Fish Reveals a Marine Biogeographic Break of Terrestrial Origin in the Southern Caribbean

    Get PDF
    Marine allopatric speciation involves interplay between intrinsic organismal properties and extrinsic factors. However, the relative contribution of each depends on the taxon under study and its geographic context. Utilizing sea catfishes in the Cathorops mapale species group, this study tests the hypothesis that both reproductive strategies conferring limited dispersal opportunities and an apparent geomorphologic barrier in the Southern Caribbean have promoted speciation in this group from a little studied area of the world.Mitochondrial gene sequences were obtained from representatives of the Cathorops mapale species group across its distributional range from Colombia to Venezuela. Morphometric and meristic analyses were also done to assess morphologic variation. Along a approximately 2000 km transect, two major lineages, Cathorops sp. and C. mapale, were identified by levels of genetic differentiation, phylogenetic reconstructions, and morphological analyses. The lineages are separated by approximately 150 km at the Santa Marta Massif (SMM) in Colombia. The northward displacement of the SMM into the Caribbean in the early Pleistocene altered the geomorphology of the continental margin, ultimately disrupting the natural habitat of C. mapale. The estimated approximately 0.86 my divergence of the lineages from a common ancestor coincides with the timing of the SMM displacement at approximately 0.78 my.Results presented here support the hypothesis that organismal properties as well as extrinsic factors lead to diversification of the Cathorops mapale group along the northern coast of South America. While a lack of pelagic larval stages and ecological specialization are forces impacting this process, the identification of the SMM as contributing to allopatric speciation in marine organisms adds to the list of recognized barriers in the Caribbean. Comparative examination of additional Southern Caribbean taxa, particularly those with varying life history traits and dispersal capabilities, will determine the extent by which the SMM has influenced marine phylogeography in the region

    Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    Get PDF
    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa

    200 years of marine research at Senckenberg: selected highlights

    No full text
    corecore