194 research outputs found
Simple Penning Ion Source for Laboratory Research and Development Applications
A simple Penning ion generator (PIG) that can be easily fabricated with simple machining skills and standard laboratory accessories is described. The PIG source uses an iron cathode body, samarium cobalt permanent magnet, stainless steel anode, and iron cathode faceplate to generate a plasma discharge that yields a continuous 1 mA beam of positively charged hydrogen ions at 1 mTorr of pressure. This operating condition requires 5.4 kV and 32.4 W of power. Operation with helium is similar to hydrogen. The ion source is being designed and investigated for use in a sealed-tube neutron generator; however, this ion source is thoroughly described so that it can be easily implemented by other researchers for other laboratory research and development applications
Recommended from our members
Erosion/redeposition analysis of lithium-based liquid surface divertors.
Recommended from our members
Assessment of erosion and surface tritium inventory issues for the ITER divertor
The authors analyzed sputtering erosion and tritium codeposition for the ITER vertical target divertor design using erosion and plasma codes (WBC/REDEP/DEGAS+) coupled to available materials data. Computations were made for a beryllium, carbon, and tungsten coated divertor plate, and for three edged plasma regimes. New data on tritium codeposition in beryllium was obtained with the TPE facility. This shows codeposited H/Be ratios of the order of 10% for surface temperatures {le} 300 C, beryllium thereby being similar to carbon in this respect. Hydrocarbon transport calculations show significant loss (10--20%) of chemically sputtered carbon for detached conditions (T{sub e} {approx} 1 eV at the divertor), compared to essentially no loss (100% redeposition) for higher temperature plasmas. Calculations also show a high, non-thermal, D-T molecular flux for detached conditions. Tritium codeposition rates for carbon are very high for detached conditions ({approximately} 20g-T/1000 s discharge), due to buildup of chemically sputtered carbon on relatively cold surfaces of the divertor cassette. Codeposition is lower ({approximately} 10X) for higher edge temperatures ({approximately} 8--30 eV) and is primarily due to divertor plate buildup of physically sputtered carbon. Peak net erosion rates for carbon are of order 30 cm/burn-yr. Erosion and codeposition rates for beryllium are much lower than for carbon at detached conditions, but are similar to carbon for the higher temperatures. Both erosion and tritium codeposition are essentially nil for tungsten for the regimes studied
Somatic and Vicarious Pain are Represented by Dissociable Multivariate Brain Patterns
Understanding how humans represent othersâ pain is critical for understanding pro-social behavior. âShared experienceâ theories propose common brain representations for somatic and vicarious pain, but other evidence suggests that specialized circuits are required to experience othersâ suffering. Combining functional neuroimaging with multivariate pattern analyses, we identified dissociable patterns that predicted somatic (high versus low: 100%) and vicarious (high versus low: 100%) pain intensity in out-of-sample individuals. Critically, each pattern was at chance in predicting the other experience, demonstrating separate modifiability of both patterns. Somatotopy (upper versus lower limb: 93% accuracy for both conditions) was also distinct, located in somatosensory versus mentalizing-related circuits for somatic and vicarious pain, respectively. Two additional studies demonstrated the generalizability of the somatic pain pattern (which was originally developed on thermal pain) to mechanical and electrical pain, and also demonstrated the replicability of the somatic/vicarious dissociation. These findings suggest possible mechanisms underlying limitations in feeling othersâ pain, and present new, more specific, brain targets for studying pain empathy
Error mitigation, optimization, and extrapolation on a trapped ion testbed
Current noisy intermediate-scale quantum (NISQ) trapped-ion devices are
subject to errors around 1% per gate for two-qubit gates. These errors
significantly impact the accuracy of calculations if left unchecked. A form of
error mitigation called Richardson extrapolation can reduce these errors
without incurring a qubit overhead. We demonstrate and optimize this method on
the Quantum Scientific Computing Open User Testbed (QSCOUT) trapped-ion device
to solve an electronic structure problem. We explore different methods for
integrating this error mitigation technique into the Variational Quantum
Eigensolver (VQE) optimization algorithm for calculating the ground state of
the HeH+ molecule at 0.8 Angstrom. We test two methods of scaling noise for
extrapolation: time-stretching the two-qubit gates and inserting two-qubit gate
identity operations into the ansatz circuit. We find the former fails to scale
the noise on our particular hardware. Scaling our noise with global gate
identity insertions and extrapolating only after a variational optimization
routine, we achieve an absolute relative error of 0.363% +- 1.06 compared to
the true ground state energy of HeH+. This corresponds to an absolute error of
0.01 +- 0.02 Hartree; outside chemical accuracy, but greatly improved over our
non error mitigated estimate. We ultimately find that the efficacy of this
error mitigation technique depends on choosing the right implementation for a
given device architecture and sampling budget.Comment: 16 pages, 11 figure
Siderite micro-modification for enhanced corrosion protection
Production of oil and gas results in the creation of carbon dioxide (COâ) which when wet is extremely corrosive owing to the speciation of carbonic acid. Severe production losses and safety incidents occur when carbon steel (CS) is used as a pipeline material if corrosion is not properly managed. Currently corrosion inhibitor (CI) chemicals are used to ensure that the material degradation rates are properly controlled; this imposes operational constraints, costs of deployment and environmental issues. In specific conditions, a naturally growing corrosion product known as siderite or iron carbonate (FeCOâ) precipitates onto the internal pipe wall providing protection from electrochemical degradation. Many parameters influence the thermodynamics of FeCOâ precipitation which is generally favoured at high values of temperatures, pressure and pH. In this paper, a new approach for corrosion management is presented; micro-modifying the corrosion product. This novel mitigation approach relies on enhancing the crystallisation of FeCOâ and improving its density, protectiveness and mechanical properties. The addition of a silicon-rich nanofiller is shown to augment the growth of FeCOâ at lower pH and temperature without affecting the bulk pH. The hybrid FeCOâ exhibits superior general and localised corrosion properties. The findings herein indicate that it is possible to locally alter the environment in the vicinity of the corroding steel in order to grow a dense and therefore protective FeCOâ film via the incorporation of hybrid organic-inorganic silsesquioxane moieties. The durability and mechanical integrity of the film is also significantly improved
INTEGRATION OF COMPLEMENTARY BIOMARKERS IN PATIENTS WITH FIRST EPISODE PSYCHOSIS: RESEARCH PROTOCOL OF A PROSPECTIVE FOLLOW UP STUDY
In this project, we recruited a sample of 150 patients with first episode of psychosis with schizophrenia features (FEP) and 100 healthy controls. We assessed the differences between these two groups, as well as the changes between the acute phase of illness and subsequent remission among patients over 18-month longitudinal follow-up. The assessments were divided into four work packages (WP): WP1- psychopathological status, neurocognitive functioning and emotional recognition; WP2- stress response measured by saliva cortisol during a stress paradigm; cerebral blood perfusion in the resting state (with single photon emission computed tomography (SPECT) and during activation paradigm (with Transcranial Ultrasonography Doppler (TCD); WP3-post mortem analysis in histologically prepared human cortical tissue of post mortem samples of subjects with schizophrenia in the region that synaptic alteration was suggested by WP1 and WP2; WP4- pharmacogenetic analysis (single gene polymorphisms and genome wide association study (GWAS). We expect that the analysis of these data will identify a set of markers that differentiate healthy controls from patients with FEP, and serve as an additional diagnostic tool in the first episode of psychosis, and prediction tool which can be then used to help tailoring individualized treatment options. In this paper, we describe the project protocol including aims and methods and provide a brief description of planned post mortem studies and pharmacogenetic analysis
On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools
Background: In the Neolithic, domestic sheep migrated into Europe and subsequently spread in westerly and northwesterly directions. Reconstruction of these migrations and subsequent genetic events requires a more detailed characterization of the current phylogeographic differentiation. Results: We collected 50 K single nucleotide polymorphism (SNP) profiles of Balkan sheep that are currently found near the major Neolithic point of entry into Europe, and combined these data with published genotypes from southwest-Asian, Mediterranean, central-European and north-European sheep and from Asian and European mouflons. We detected clines, ancestral components and admixture by using variants of common analysis tools: geography-informative supervised principal component analysis (PCA), breed-specific admixture analysis, across-breed f 4 profiles and phylogenetic analysis of regional pools of breeds. The regional Balkan sheep populations exhibit considerable genetic overlap, but are clearly distinct from the breeds in surrounding regions. The Asian mouflon did not influence the differentiation of the European domestic sheep and is only distantly related to present-day sheep, including those from Iran where the mouflons were sampled. We demonstrate the occurrence, from southeast to northwest Europe, of a continuously increasing ancestral component of up to 20% contributed by the European mouflon, which is assumed to descend from the original Neolithic domesticates. The overall patterns indicate that the Balkan region and Italy served as post-domestication migration hubs, from which wool sheep reached Spain and north Italy with subsequent migrations northwards. The documented dispersal of Tarentine wool sheep during the Roman period may have been part of this process. Our results also reproduce the documented 18th century admixture of Spanish Merino sheep into several central-European breeds. Conclusions: Our results contribute to a better understanding of the events that have created the present diversity pattern, which is relevant for the management of the genetic resources represented by the European sheep population
- âŠ