33 research outputs found

    A time-resolved proteomic and prognostic map of COVID-19.

    Get PDF
    COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease

    A time-resolved proteomic and prognostic map of COVID-19

    Get PDF
    COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease

    A proteomic survival predictor for COVID-19 patients in intensive care

    Get PDF
    Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care

    A time-resolved proteomic and prognostic map of COVID-19

    Get PDF
    COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease

    A Multicenter Randomized Controlled Trial of Zephyr Endobronchial Valve Treatment in Heterogeneous Emphysema (TRANSFORM)

    Get PDF
    Rationale: Single-center randomized controlled trials of the Zephyr endobronchial valve (EBV) treatment have demonstrated benefit in severe heterogeneous emphysema. This is the first multicenter study evaluating this treatment approach. Objectives: To evaluate the efficacy and safety of Zephyr EBVs in patients with heterogeneous emphysema and absence of collateral ventilation. Methods: This was a prospective, multicenter 2:1 randomized controlled trial of EBVs plus standard of care or standard of care alone (SoC). Primary outcome at 3 months post-procedure was the percentage of subjects with FEV1 improvement from baseline of 12% or greater. Changes in FEV1, residual volume, 6-minute-walk distance, St. George's Respiratory Questionnaire score, and modified Medical Research Council score were assessed at 3 and 6 months, and target lobe volume reduction on chest computed tomography at 3 months. Measurements and Main Results: Ninety seven subjects were randomized toEBV(n = 65) or SoC(n = 32). At 3 months, 55.4% of EBV and 6.5% of SoC subjects had an FEV1 improvement of 12% or more (P <0.001). Improvements were maintained at 6 months: EBV 56.3% versus SoC 3.2% (P <0.001), with a mean +/- SD change in FEV1 at 6 months of 20.7 +/- 29.6% and -8.6 +/- 13.0%, respectively. A total of 89.8% of EBV subjects had target lobe volume reduction greater than or equal to 350 ml, mean 1.09 +/- 0.62 L (P <0.001). Between-group differences for changes at 6 months were statistically and clinically significant: Delta EBV-SoC for residual volume, -700 ml; 6-minute-walk distance, +78.7 m; St. George's Respiratory Questionnaire score, -6.5 points; modified Medical Research Council dyspnea score, -0.6 points; and BODE(body mass index, airflow obstruction, dyspnea, and exercise capacity) index, 21.8 points (all P <0.05). Pneumothorax was the most common adverse event, occurring in 19 of 65 (29.2%) of EBV subjects. Conclusions: EBV treatment in hyperinflated patients with heterogeneous emphysema without collateral ventilation resulted in clinically meaningful benefits in lung function, dyspnea, exercise tolerance, and quality of life, with an acceptable safety profile

    Clinical and virological characteristics of hospitalised COVID-19 patients in a German tertiary care centre during the first wave of the SARS-CoV-2 pandemic: a prospective observational study

    Get PDF
    Purpose: Adequate patient allocation is pivotal for optimal resource management in strained healthcare systems, and requires detailed knowledge of clinical and virological disease trajectories. The purpose of this work was to identify risk factors associated with need for invasive mechanical ventilation (IMV), to analyse viral kinetics in patients with and without IMV and to provide a comprehensive description of clinical course. Methods: A cohort of 168 hospitalised adult COVID-19 patients enrolled in a prospective observational study at a large European tertiary care centre was analysed. Results: Forty-four per cent (71/161) of patients required invasive mechanical ventilation (IMV). Shorter duration of symptoms before admission (aOR 1.22 per day less, 95% CI 1.10-1.37, p < 0.01) and history of hypertension (aOR 5.55, 95% CI 2.00-16.82, p < 0.01) were associated with need for IMV. Patients on IMV had higher maximal concentrations, slower decline rates, and longer shedding of SARS-CoV-2 than non-IMV patients (33 days, IQR 26-46.75, vs 18 days, IQR 16-46.75, respectively, p < 0.01). Median duration of hospitalisation was 9 days (IQR 6-15.5) for non-IMV and 49.5 days (IQR 36.8-82.5) for IMV patients. Conclusions: Our results indicate a short duration of symptoms before admission as a risk factor for severe disease that merits further investigation and different viral load kinetics in severely affected patients. Median duration of hospitalisation of IMV patients was longer than described for acute respiratory distress syndrome unrelated to COVID-19

    Severity of respiratory failure and computed chest tomography in acute COVID-19 correlates with pulmonary function and respiratory symptoms after infection with SARS-CoV-2: an observational longitudinal study over 12 months

    No full text
    INTRODUCTION: Prospective and longitudinal data on pulmonary injury over one year after acute coronavirus disease 2019 (COVID-19) are sparse. We aim to determine reductions in pulmonary function and respiratory related quality of life up to 12 months after acute COVID-19. METHODS: Patients with acute COVID-19 were enrolled into an ongoing single-centre, prospective observational study and prospectively examined 6 weeks, 3, 6 and 12 months after onset of COVID-19 symptoms. Chest CT-scans, pulmonary function and symptoms assessed by St. Georges Respiratory Questionnaire were used to evaluate respiratory limitations. Patients were stratified according to severity of acute COVID-19. RESULTS: Median age of all patients was 57 years, 37.8% were female. Higher age, male sex and higher BMI were associated with acute-COVID-19 severity (p < 0.0001, 0.001 and 0.004 respectively). Also, pulmonary restriction and reduced carbon monoxide diffusion capacity was associated with disease severity. In patients with restriction and impaired diffusion capacity, FVC improved over 12 months from 61.32 to 71.82, TLC from 68.92 to 76.95, DLCO from 60.18 to 68.98 and KCO from 81.28 to 87.80 (percent predicted values; p = 0.002, 0.045, 0.0002 and 0.0005). The CT-score of lung involvement in the acute phase was associated with restriction and reduction in diffusion capacity in follow-up. Respiratory symptoms improved for patients in higher severity groups during follow-up, but not for patients with initially mild disease. CONCLUSION: Severity of respiratory failure during COVID-19 correlates with the degree of pulmonary function impairment and respiratory quality of life in the year after acute infection

    Cenicriviroc for the treatment of COVID-19: first interim results of a randomised, placebo-controlled, investigator-initiated, double-blind phase II trial

    No full text
    Objectives: C-C-chemokine receptors (CCRs) are expressed on a variety of immune cells and play an important role in many immune processes, particularly leukocyte migration. Comprehensive preclinical research demonstrated CCR2/CCR5-dependent pathways as pivotal for the pathophysiology of severe COVID-19. Here we report human data on use of a chemokine receptor inhibitor in patients with COVID-19. Methods: Interim results of a 2:1 randomised, placebo-controlled, investigator-initiated trial on the CCR2/CCR5-inhibitor Cenicriviroc (CVC) 150 mg BID orally for 28 d in hospitalised patients with moderate to severe COVID-19 are reported. The primary endpoint is the subject's responder status defined by achieving grade 1 or 2 on the 7-point ordinal scale of clinical improvement on day 15. Results: Of the 30 patients randomised, 18 were assigned to receive CVC and 12 to placebo. Efficient CCR2- and CCR5 inhibition was demonstrated through CCL2 and CCL4 elevation in CVC-treated patients (485% and 80% increase on day 3 compared to the baseline, respectively). In the modified intention-to-treat population, 82.4% of patients (14/17) in the CVC group met the primary endpoint, as did 91.7% (11/12) in the placebo group (OR = 0.5, 95% CI = 0.04–3.41). One patient treated with CVC died of progressive acute respiratory distress syndrome, and the remaining had a favourable outcome. Overall, treatment with CVC was well tolerated, with most adverse events being grade I or II and resolving spontaneously. Conclusions: Our interim analysis provides proof-of-concept data on CVC for COVID-19 patients as an intervention to inhibit CCR2/CCR5. Further studies are warranted to assess its clinical efficacy
    corecore