163 research outputs found
Transmural variations in gene expression of stretch-modulated proteins in the rat left ventricle
The properties of left ventricular cardiac myocytes vary transmurally. This may be related to the gradients of stress and strain experienced in vivo across the ventricular wall. We tested the hypothesis that within the rat left ventricle there are transmural differences in the expression of genes for proteins that are involved in mechanosensitive pathways and in associated physiological responses. Real time reverse transcription polymerase chain reaction was used to measure messenger RNA (mRNA) levels of selected targets in sub-epicardial (EPI) and sub-endocardial (ENDO) myocardium. Carbon fibres were attached to single myocytes to stretch them and to record contractility. We observed that the slow positive inotropic response to stretch was not different between EPI and ENDO myocytes and consistent with this, that the mRNA expression of two proteins implicated in the slow response, non-specific cationic mechanosensitive channels (TRPC-1) and Na/H exchanger, were not different. However, mRNA levels of other targets, e.g. the mechanosensitive K+ channel TREK-1, Brain Natriuretic Peptide and Endothelin-1 receptor B, were significantly greater in ENDO than EPI. No targets had significantly greater mRNA levels in EPI than ENDO. On the basis of these findings, we suggest that the response of the ventricle to stretch will depend upon both the regional differences in stimuli and the relative expression of the mechanosensitive targets and that generally, stretch sensitivity is predicted to be greater in ENDO
Microarray analysis of gene expression profiles of cardiac myocytes and fibroblasts after mechanical stress, ionising or ultraviolet radiation
BACKGROUND: During excessive pressure or volume overload, cardiac cells are subjected to increased mechanical stress (MS). We set out to investigate how the stress response of cardiac cells to MS can be compared to genotoxic stresses induced by DNA damaging agents. We chose for this purpose to use ionising radiation (IR), which during mediastinal radiotherapy can result in cardiac tissue remodelling and diminished heart function, and ultraviolet radiation (UV) that in contrast to IR induces high concentrations of DNA replication- and transcription-blocking lesions. RESULTS: Cultures enriched for neonatal rat cardiac myocytes (CM) or fibroblasts were subjected to any one of the three stressors. Affymetrix microarrays, analysed with Linear Modelling on Probe Level, were used to determine gene expression patterns at 24 hours after (the start of) treatment. The numbers of differentially expressed genes after UV were considerably higher than after IR or MS. Remarkably, after all three stressors the predominant gene expression response in CM-enriched fractions was up-regulation, while in fibroblasts genes were more frequently down-regulated. To investigate the activation or repression of specific cellular pathways, genes present on the array were assigned to 25 groups, based on their biological function. As an example, in the group of cholesterol biosynthesis a significant proportion of genes was up-regulated in CM-enriched fractions after MS, but down-regulated after IR or UV. CONCLUSION: Gene expression responses after the types of cellular stress investigated (MS, IR or UV) have a high stressor and cell type specificity
Cinaciguat prevents the development of pathologic hypertrophy in a rat model of left ventricular pressure overload
Pathologic myocardial hypertrophy develops when the heart is chronically pressure-overloaded. Elevated intracellular cGMP-levels have been reported to prevent the development of pathologic myocardial hypertrophy, therefore we investigated the effects of chronic activation of the cGMP producing enzyme, soluble guanylate cyclase by Cinaciguat in a rat model of pressure overload-induced cardiac hypertrophy. Abdominal aortic banding (AAB) was used to evoke pressure overload-induced cardiac hypertrophy in male Wistar rats. Sham operated animals served as controls. Experimental and control groups were treated with 10 mg/kg/day Cinaciguat (Cin) or placebo (Co) p.o. for six weeks, respectively. Pathologic myocardial hypertrophy was present in the AABCo group following 6 weeks of pressure overload of the heart, evidenced by increased relative heart weight, average cardiomyocyte diameter, collagen content and apoptosis. Cinaciguat did not significantly alter blood pressure, but effectively attenuated all features of pathologic myocardial hypertrophy, and normalized functional changes, such as the increase in contractility following AAB. Our results demonstrate that chronic enhancement of cGMP signalling by pharmacological activation of sGC might be a novel therapeutic approach in the prevention of pathologic myocardial hypertrophy
Syndecan-4 Is Essential for Development of Concentric Myocardial Hypertrophy via Stretch-Induced Activation of the Calcineurin-NFAT Pathway
Sustained pressure overload leads to compensatory myocardial hypertrophy and subsequent heart failure, a leading cause of morbidity and mortality. Further unraveling of the cellular processes involved is essential for development of new treatment strategies. We have investigated the hypothesis that the transmembrane Z-disc proteoglycan syndecan-4, a co-receptor for integrins, connecting extracellular matrix proteins to the cytoskeleton, is an important signal transducer in cardiomyocytes during development of concentric myocardial hypertrophy following pressure overload. Echocardiographic, histochemical and cardiomyocyte size measurements showed that syndecan-4−/− mice did not develop concentric myocardial hypertrophy as found in wild-type mice, but rather left ventricular dilatation and dysfunction following pressure overload. Protein and gene expression analyses revealed diminished activation of the central, pro-hypertrophic calcineurin-nuclear factor of activated T-cell (NFAT) signaling pathway. Cardiomyocytes from syndecan-4−/−-NFAT-luciferase reporter mice subjected to cyclic mechanical stretch, a hypertrophic stimulus, showed minimal activation of NFAT (1.6-fold) compared to 5.8-fold increase in NFAT-luciferase control cardiomyocytes. Accordingly, overexpression of syndecan-4 or introducing a cell-permeable membrane-targeted syndecan-4 polypeptide (gain of function) activated NFATc4 in vitro. Pull-down experiments demonstrated a direct intracellular syndecan-4-calcineurin interaction. This interaction and activation of NFAT were increased by dephosphorylation of serine 179 (pS179) in syndecan-4. During pressure overload, phosphorylation of syndecan-4 was decreased, and association between syndecan-4, calcineurin and its co-activator calmodulin increased. Moreover, calcineurin dephosphorylated pS179, indicating that calcineurin regulates its own binding and activation. Finally, patients with hypertrophic myocardium due to aortic stenosis had increased syndecan-4 levels with decreased pS179 which was associated with increased NFAT activation. In conclusion, our data show that syndecan-4 is essential for compensatory hypertrophy in the pressure overloaded heart. Specifically, syndecan-4 regulates stretch-induced activation of the calcineurin-NFAT pathway in cardiomyocytes. Thus, our data suggest that manipulation of syndecan-4 may provide an option for therapeutic modulation of calcineurin-NFAT signaling
Distinct monocyte gene-expression profiles in autoimmune diabetes
OBJECTIVE-There is evidence that monocytes of patients with type 1 diabetes show proinflammatory activation and disturbed migration/adhesion, but the evidence is inconsistent. Our hypothesis is that monocytes are distinctly activated/disturbed in different subforms of autoimmune diabetes. RESEARCH DESIGN AND METHODS-We studied patterns of inflammatory gene expression in monocytes of patients with type 1 diabetes (juvenile onset, n = 30; adult onset, n = 30) and latent autoimmune diabetes of the adult (LADA) (n = 30) (controls subjects, n = 49; type 2 diabetic patients, n = 30) using quantitative PCR. We tested 25 selected genes: 12 genes detected in a prestudy via whole-genome analyses plus an additional 13 genes identified as part of a monocyte inflammatory signature previously reported. RESULTS-We identified two distinct monocyte gene expression clusters in autoimmune diabetes. One cluster (comprising 12 proinflammatory cytokine/compound genes with a putative key gene PDE4B) was detected in 60% of LADA and 28% of adult-onset type 1 diabetic patients but in only 10% of juvenile - onset type 1 diabetic patients. A second cluster (comprising 10 chemotaxis, adhesion, motility, and metabolism genes) was detected in 43% of juvenile-onset type 1 diabetic and 33% of LADA patients but in only 9% of adult-onset type 1 diabetic patients. CONCLUSIONS-Subgroups of type 1 diabetic patients show an abnormal monocyte gene expression with two profiles, supporting a concept of heterogeneity in the pathogenesis of autoimmune diabetes only partly overlapping with the presently known diagnostic categories
Role of fibroblasts in the regulation of proinflammatory interleukin IL-1, IL-6 and IL-8 levels induced by keratinocyte-derived IL-1
Contains fulltext :
22936___.PDF (publisher's version ) (Open Access
- …