2,476 research outputs found

    Radionuclide Ionization in Protoplanetary Disks: Calculations of Decay Product Radiative Transfer

    Full text link
    We present simple analytic solutions for the ionization rate ζSLR\zeta_{\rm{SLR}} arising from the decay of short-lived radionuclides (SLRs) within protoplanetary disks. We solve the radiative transfer problem for the decay products within the disk, and thereby allow for the loss of radiation at low disk surface densities; energy loss becomes important outside R≳30R\gtrsim30 for typical disk masses Mg=0.04M_g=0.04 M⊙_\odot. Previous studies of chemistry/physics in these disks have neglected the impact of ionization by SLRs, and often consider only cosmic rays (CRs), because of the high CR-rate present in the ISM. However, recent work suggests that the flux of CRs present in the circumstellar environment could be substantially reduced by relatively modest stellar winds, resulting in severely modulated CR ionization rates, ζCR\zeta_{\rm{CR}}, equal to or substantially below that of SLRs (ζSLR≲10−18\zeta_{\rm{SLR}}\lesssim10^{-18} s−1^{-1}). We compute the net ionizing particle fluxes and corresponding ionization rates as a function of position within the disk for a variety of disk models. The resulting expressions are especially simple for the case of vertically gaussian disks (frequently assumed in the literature). Finally, we provide a power-law fit to the ionization rate in the midplane as a function of gas disk surface density and time. Depending on location in the disk, the ionization rates by SLRs are typically in the range ζSLR∼(1−10)×10−19\zeta_{\rm{SLR}}\sim(1-10)\times10^{-19} s−1^{-1}.Comment: 7 pages, 4 figures, accepted to Ap

    Exploiting flow dynamics for super-resolution in contrast-enhanced ultrasound

    Get PDF
    Ultrasound localization microscopy offers new radiation-free diagnostic tools for vascular imaging deep within the tissue. Sequential localization of echoes returned from inert microbubbles with low-concentration within the bloodstream reveal the vasculature with capillary resolution. Despite its high spatial resolution, low microbubble concentrations dictate the acquisition of tens of thousands of images, over the course of several seconds to tens of seconds, to produce a single super-resolved image. %since each echo is required to be well separated from adjacent microbubbles. Such long acquisition times and stringent constraints on microbubble concentration are undesirable in many clinical scenarios. To address these restrictions, sparsity-based approaches have recently been developed. These methods reduce the total acquisition time dramatically, while maintaining good spatial resolution in settings with considerable microbubble overlap. %Yet, non of the reported methods exploit the fact that microbubbles actually flow within the bloodstream. % to improve recovery. Here, we further improve sparsity-based super-resolution ultrasound imaging by exploiting the inherent flow of microbubbles and utilize their motion kinematics. While doing so, we also provide quantitative measurements of microbubble velocities. Our method relies on simultaneous tracking and super-localization of individual microbubbles in a frame-by-frame manner, and as such, may be suitable for real-time implementation. We demonstrate the effectiveness of the proposed approach on both simulations and {\it in-vivo} contrast enhanced human prostate scans, acquired with a clinically approved scanner.Comment: 11 pages, 9 figure

    A Preliminary Investigation for Application of an Advanced X-Ray Diffraction Analyzer to In-Process Texture Assessment of Aluminum Alloy Sheet

    Get PDF
    The objective of the this preliminary investigation was to assess the possibility of the use of rapid x-ray diffraction technology to non-destructively distinguish various texture conditions of aluminum can stock

    Transfusion Reduction in Orthopedic Surgery

    Get PDF

    Outflow forces of low mass embedded objects in Ophiuchus: a quantitative comparison of analysis methods

    Get PDF
    The outflow force of molecular bipolar outflows is a key parameter in theories of young stellar feedback on their surroundings. The focus of many outflow studies is the correlation between the outflow force, bolometric luminosity and envelope mass. However, it is difficult to combine the results of different studies in large evolutionary plots over many orders of magnitude due to the range of data quality, analysis methods and corrections for observational effects such as opacity and inclination. We aim to determine the outflow force for a sample of low luminosity embedded sources. We will quantify the influence of the analysis method and the assumptions entering the calculation of the outflow force. We use the James Clerk Maxwell Telescope to map 12CO J=3-2 over 2'x2' regions around 16 Class I sources of a well-defined sample in Ophiuchus at 15" resolution. The outflow force is then calculated using seven different methods differing e.g. in the use of intensity-weighted emission and correction factors for inclination. The results from the analysis methods differ from each other by up to a factor of 6, whereas observational properties and choices in the analysis procedure affect the outflow force by up to a factor of 4. For the sample of Class I objects, bipolar outflows are detected around 13 sources including 5 new detections, where the three non-detections are confused by nearby outflows from other sources. When combining outflow forces from different studies, a scatter by up to a factor of 5 can be expected. Although the true outflow force remains unknown, the separation method (separate calculation of dynamical time and momentum) is least affected by the uncertain observational parameters. The correlations between outflow force, bolometric luminosity and envelope mass are further confirmed down to low luminosity sources.Comment: 24 pages, 13 figures, Accepted by A&
    • …
    corecore