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Exploiting Flow Dynamics for Superresolution in
Contrast-Enhanced Ultrasound

Oren Solomon™, Student Member, IEEE, Ruud J. G. van Sloun", Member, IEEE, Hessel Wijkstra,

Massimo Mischi

Abstract— Ultrasound (US) localization microscopy offers new
radiation-free diagnostic tools for vascular imaging deep within
the tissue. Sequential localization of echoes returned from inert
microbubbles (MBs) with low concentration within the blood-
stream reveals the vasculature with capillary resolution. Despite
its high spatial resolution, low MB concentrations dictate the
acquisition of tens of thousands of images, over the course
of several seconds to tens of seconds, to produce a single
superresolved image. Such long acquisition times and strin-
gent constraints on MB concentration are undesirable in many
clinical scenarios. To address these restrictions, sparsity-based
approaches have recently been developed. These methods reduce
the total acquisition time dramatically, while maintaining good
spatial resolution in settings with considerable MB overlap. Here,
we further improve the spatial resolution and visual vascular
reconstruction quality of sparsity-based superresolution US imag-
ing from low-frame rate acquisitions, by exploiting the inherent
flow of MBs and utilize their motion kinematics. We also provide
quantitative measurements of MB velocities and show that our
approach achieves higher MB recall rate than the state-of-the-art
techniques, while increasing contrast agents concentration. Our
method relies on simultaneous tracking and sparsity-based detec-
tion of individual MBs in a frame-by-frame manner, and as such,
may be suitable for real-time implementation. The effectiveness of
the proposed approach is demonstrated on both simulations and
an in vivo contrast-enhanced human prostate scan, acquired with
a clinically approved scanner operating at a 10-Hz frame rate.

Index Terms— Compressed sensing, contrast agents, Kalman
filter, superresolution, ultrasound (US).

I. INTRODUCTION

N the past several decades, ultrasonic contrast agents
have been utilized successfully in numerous applications
[1]-[3]. In particular, contrast-enhanced ultrasound (CEUS)
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imaging takes the advantage of inert MBs that are injected
into the bloodstream, as means to image blood vessels
with the improved contrast, compared with the standard
B-mode US imaging [4]. In recent years, superresolution
US imaging emerged and enabled the fine visualization and
detailed assessment of capillary blood vessels in vivo [5]—
[11]. This approach was also extended to 3-D imaging for
the identification of microvascular morphology features of
tumor angiogenesis [12]. Superresolution US relies on con-
cepts borrowed from superresolution fluorescence microscopy
techniques such as photo-activated localization microscopy
(PALM) and stochastic optical reconstruction microscopy
(STORM) [13], [14], which localize individual fluorescing
molecules with subpixel precision over many frames and sum
all localizations to produce a superresolved image. In CEUS,
individual resonating MBs, similar in size to red blood cells,
serve as point emitters. Their subsequent localizations are
then accumulated to produce the final superresolved image
of the vascular bed with a tenfold improved spatial resolution
compared with standard CEUS imaging. To produce a reliable
reconstruction, low MB concentrations are typically used [6],
[7], such that in each frame, all MBs are well isolated from
one another. The localization procedure then amounts to pin-
pointing the centroid of a single Gaussian for each detected
MB in the captured movie.

Despite yielding a substantial improvement in spatial reso-
lution, superresolution US imaging typically requires tens of
thousands of images to produce a single superresolved image.
Acquisition of such a large number of frames results in long
scanning durations, leading to poor temporal resolution on
the reconstructed sequence. Furthermore, clinical bolus doses
injected to human patients result in high overlap between
different MBs [15]. These limitations hamper the clinical
applicability of localization-based superresolution techniques.

To overcome the temporal limitation of localization-based
superresolution without compromising the spatial resolution
of the reconstructed image, sparsity-based [16] approaches
were recently proposed [17]-[20]. These techniques favor
overlapping MBs to reduce the total acquisition time. Thus,
sparsity-based methods achieve faster temporal resolution
using standard clinical concentrations of MBs. In [17]-[19],
sparsity-based superresolution US hemodynamic imaging
(SUSHI), using ultrafast plane-wave acquisition, demonstrated
a superresolved time-lapse movie of 25 Hz, showing superre-
solved hemodynamic changes in blood flow within a rabbit’s
kidney. In [20], using a clinically approved scanner with an
acquisition rate of 10 Hz, a superresolved image of a human
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prostate vasculature was shown. In particular, a clear depiction
of vascular bifurcations was obtained, although significant MB
overlap was present, by performing frame-by-frame sparse
localization and subsequent accumulation of all localizations
to produce the final superresolved image.

One major difference between superresolution in US and in
microscopy is that the point emitters in US are flowing inside
the blood vessels, whereas in microscopy superresolution
imaging, fluorescent molecules are fixed to the subcellular
organelles. Since the motion of individual MBs is not ran-
dom but rather within blood vessels, this can be exploited
to improve the recovery process. This paper builds on our
previous results on superresolution US imaging [19], [20]
by exploiting the flow kinematics of individual MBs as an
additional prior in the sparse recovery process.

While previous superresolution works focused on ultra-
fast plane-wave image acquisition, see [5], [17], [19], most
clinically used scanners are low-rate scanners (10-25 Hz).
When using high frame-rate scanners, e.g., ultrafast plane-
wave imaging, fast superresolution imaging can be achieved
via SUSHI [17]-[19], exhibiting a smooth depiction of the
superresolved vessels, with a relatively low-complexity algo-
rithm. However, as the frame-rate decreases, MB detections
become more sporadic, even when using SUSHI, resulting in
an inconsistent depiction of the vessels. Thus, the so-called
missing information needs to be filled-in by other means, albeit
with higher computational cost.

Here, our aim is to bridge the gap between superres-
olution techniques and data obtained from research plat-
forms in laboratory environments, typically low-rate intensity
images where significant MB overlap is present. By doing
so, as demonstrated in Section IV, our technique enables
practitioners to analyze readily available CEUS scans and
obtain both architectural as well as functional blood flow
information. Such analysis can expedite the process of gaining
new insights regarding cancer diagnosis [21], treatment, in vivo
flow characterization [8], and more.

Our method combines weighted sparse recovery with simul-
taneous tracking of the individual MBs in the imaging plane.
MBs flow inside blood vessels, hence their movement from
one frame to the next is structured. Therefore, MBs are more
likely to be found in certain areas of the next frame, given
their current locations. Each MB track is used to estimate
the position of the MBs and fill-in for the missing spatial
information due to low-rate scanning, thus providing a smooth
depiction of the superresolved vessels. Since the capillary flow
is nonturbulent (peak Reynolds number of 0.001) [8], [22],
a linear propagation model is used to describe MBs flow from
one frame to the next. The accumulated position estimates
are then used to form a weighting matrix for weighted sparse
recovery which locates the MBs. This allows to favor more
likely locations in the sparse recovery process. With the
addition of each new frame, the tracks are updated online. Our
method is titled simultaneous sparsity-based superresolution
and tracking, or 3SAT' (pronounced triple-SAT). Since our
approach tracks individual MBs, it is possible to also estimate

10nline code: http://www.wisdom.weizmann.ac.il/~yonina/YoninaEldar
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“Detected MB
~ Estimated MB
“. trajectory
“Received MB echo

“MB position
uncertainty ellipse

Fig. 1. Proposed concept of 3SAT. Individual MBs flow within a blood vessel
depicted here as a bifurcation by black solid contour lines. Large, transparent,
and red ellipses represent the echoes measured from individual MBs. In frame
t = 1, MBs are detected using sparse recovery (small red dots). Applying
a Kalman filter, their positions are propagated to the next frame ( = 2)
as marked by the black dashed arrows. Using the error covariance matrix
of the filter, the ellipses of most likely positions for the MBs are generated
as illustrated by the black dashed ellipses. These ellipses are then used as
weights in the sparse recovery process in the next frame (¢ = 2), and so on.
Blue lines: estimated trajectories of the MBs.

their velocities. We provide in vivo superresolution CEUS
imaging of a human prostate and show that its velocity
estimation agrees with the previously published results [15].
An illustration of the proposed concept is shown in Fig. 1.

The methods proposed in this work relate to those presented
in [8], in which the authors incorporated an automated detec-
tion and tracking mechanism for localized MBs. However,
3SAT differs from [8] in the following ways. First, in [8],
the automatic tracking algorithm is not used to improve
the localization procedure over consecutive frames. Instead,
individual MBs were localized over all frames with low
MBs concentration, and only then detection and tracking
was performed on the localizations to improve the velocities
estimation. Here, 3SAT exploits detections from the previous
frames to improve the detections in the next frame, using
sparse recovery to overcome MBs overlap, resulting from
clinical bolus doses. Second, the coarse measurements of MB
movements based on optical flow (OF) estimation [23]-[26]
over the captured low-resolution sequence are exploited to
improve the tracking performance. Thus, 3SAT incorporates
not only position measurements but also velocity measure-
ments in the adopted Kalman filtering framework [27], [28].
These measurements help in improving the overall tracking
performance of the MBs, which, in turn, improves the sparse
recovery process. Typically, OF estimation is performed over
sequential pairs of images. Here, we combine OF estimation
with the Kalman filtering, as a mean to include additional
information from the previous frames and improve the overall
estimation accuracy.

The rest of this paper is organized as follows. Section II
describes 3SAT and each of its building blocks. Sections III
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Fig. 2.

Main building blocks of 3SAT. First, MBs velocities are estimated from frame k using OF estimation. The detected MBs from the previous frame

k — 1 are then propagated to frame &, assuming a constant velocity model using the Kalman filter and the measured velocities obtained from the OF estimation.
This procedure yields a new estimate for the true MB positions and velocities, and also forms the weighting matrix for frame k. This weighting matrix is then
used in the sparse recovery process to yield the superresolved frame k. This process repeats itself for each new frame in the movie. Here, Z -1 represents a

delay of one time unit. The entire 3SAT process is summarized in Algorithm 2.

and IV present in silico as well as in vivo results. A discussion
and conclusions are provided in Section V.

Throughout this paper, x represents a scalar, X represents a
vector, X represents a matrix, and Iy y is the N x N identity
matrix. The notation X’ represents the transpose of X and
X* its conjugate transpose. We denote by || - || p the standard
p-norm and by ||-|| r the Frobenius norm. Subscript x; denotes
the /th element of x and x; is the /th column of X, while
superscript (-)” refers to the pth MB. The estimated vector in
frame k, given the estimate in the (k — 1)th frame, is indicated
by Skjk—1. Similarly, Pyx_; indicates its estimated covariance
matrix k, given the k— 1 estimate. The ijth element of a matrix
A is denoted A[i, j]. The notation X explicitly indicates that
x is the Fourier domain representation of x.

II. SIMULTANEOUS SPARSITY-BASED SUPERRESOLUTION
AND TRACKING

A. Principle

In this work, our primary aim is to improve sparsity-based
superresolution US from movies that are acquired from low-
rate clinical scanners, where we have access only to the final
intensity images displayed on the screen. We start from a
CEUS sequence of K frames where each frame consists of
M x M pixels. A contrast-specific imaging mode based on
a power modulation pulse scheme is used to reject tissue
signal and enhance the signal from MBs [15], [21], [29], such
that only MBs are visualized. Since our primary focus is
on sequences acquired from low-rate scanners during the

acquisition period movement of the probe and scanned organ
are inevitable. This movement introduces inaccuracies in
the estimation process of MB positions and velocities [10].
Thus, prior to 3SAT processing, all frames are registered,
as described in [20], to compensate for this inaccuracy. After
tissue and MBs separation, the spatially correlated tissue
sequence is used for registration. For each image in the
sequence, an affine transformation is determined which maps it
to the first image in the sequence. This transformation is then
applied to each corresponding contrast image so that at the
end, all contrast images are spatially aligned. The registration
process is performed in MATLAB (The MathWorks, Inc.)
using the imregtform function. After registration, the input data
for 3SAT consist of K registered low-resolution frames.

Fig. 2 shows the main flow and building blocks of 3SAT.
Given the weighting matrix, based on trajectories estimated
from the (k — 1)th frame, 3SAT performs weighted sparse
recovery to estimate the positions of the MBs on a high-
resolution grid in the kth frame. Next, we estimate in the kth
frame a crude velocity measurement of the MBs by apply-
ing OF estimation on the captured low-resolution sequence.
Thus, for each MB, both positions and corresponding velocity
measurements are obtained, which are used in the automatic
tracking algorithm to update the positions and velocities of the
individually detected MBs via Kalman filtering. The newly
estimated positions and velocities are used to generate an
updated weighting matrix for sparse recovery of MB positions
in the (k+ 1)th frame, while providing quantitative information
on the flow kinematics.



1576

The reconstruction process of 3SAT can be considered as
sparse recovery with time-varying support, where the sup-
port represents the MBs locations. Previous works on sparse
recovery with varying support have been proposed in the
compressed sensing literature, such as [30]-[33]. 3SAT differs
from these methods in the following manner. First, previous
works assume a first-order recursion for the propagation model
of the nonzero entries of the sparse signals, i.e., Xp+1 =
oxy + vg, where xj is a scalar entry from the sparse vector,
vy 1s the additive Gaussian noise, and a is a known constant.
In this case, only the support of the sparse signal is of interest,
but in CEUS, MBs kinematics also include varying velocities.
Here, an extended model is considered, which includes the
position estimation of the MBs together with their velocities,
as presented in Section II-C. Second, as MBs flow over time,
new MBs emerge and some MBs vanish from the imaging
plane, due to the 3-D geometry of the blood vessels. It is,
thus, desirable to associate new MBs to previous localizations
to improve the overall tracking and to achieve a more reliable
estimation of their motion kinematics. This association process
is not considered in prior works but is taken into account
in 3SAT by the use of an automatic association algorithm (as
described in Section II-C), combined with Kalman filtering.

We next detail the main building blocks of 3SAT.

B. Weighted Sparse Recovery

We start with a description of our sparse recovery algorithm,
which is performed on each frame separately. Similar to [19],
a frame is modeled as a summation of L; individual MB
echoes

Li
Zk(an)=zu(x—xi,y—yi)0i (D
i=1
where u(-,-) is the (intensity-based) point spread function
(PSF) of the transducer and o; is the magnitude of the returned
echo from the ith MB located at position (x;, y;). The PSF of
the transducer is assumed to be known. In practice, the PSF
can be measured from the acquired images, as described
in [19] and [20].

Following similar derivations to [19], we discretize the kth
framein (1)as Z;,k =1, ..., K of size M x M, and denote its
vectorized form z;. We also introduce a high-resolution grid
of size N x N pixels, such that N = PM for some P > 1 and
denote the (vectorized) superresolved frame k, which contains
the locations of the MBs on the high-resolution grid, by iy.
Using knowledge of the PSF, the measured frame zj is related
to the superresolved frame iy via

z; = Hiy (2)

where H is a known dictionary matrix based on the PSF.
We follow [19], [34] and consider recovering iy in the discrete
Fourier domain. In this domain, H has the following structure:

H=UFy®Fy)

where ® symbolizes the Kronecker product of two matrices.
Here, U is an M? x M? diagonal matrix, whose diagonal
contains the vectorized 2-D discrete Fourier transform (DFT)
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Algorithm 1 FISTA for Minimizing (4)

Require: 7, fI, Wi, 2 > 0, maximum iterations Dpax
Initialize y; = x¢ = 0,~W = diag{W;},y =1landd =1
Calculate L ; = |[HH||,
while d < Dy or stopping criteria not fulfilled do

g = HHy, — H"Z;,
xg =T\ (¥a - L%gd)
f ’
Project to the non-negative orthant x;(xg < 0) = 0 and to
the real numbers x; = real(xy)

tay1 = 4 (1+,/1+4;§)

Va1 =X4 + %(Xd —X4-1)
d<«~—d+1

end while

return i =xp_,,

of the PSF, and F), is a partial M x N DFT matrix, whose M
rows contain the M lowest frequencies of a full N x N DFT
matrix. Considering (2) in the discrete Fourier domain leads to
a numerically efficient sparse solver, as described in [34]. The
estimation of iy is achieved by solving the following convex
optimization problem:

imi%||ik—IFIik||§+/1||ik||1 3)
k=

where 4 > 0 is a regularization parameter and Z is the Fourier
transform of z;. Note the iy is a real quantity.

In [20], the superresolved image is constructed by solv-
ing (3) for each frame k and accumulating all localizations.
To improve the sparse recovery process, we propose solving
the following weighted /; minimization problem:

min || — Hig |13 + 21| Wil (4)
|

The matrix Wy is an N> x N? diagonal weights matrix which
incorporates the flow dynamics of the MBs in the sparse
recovery process and changes with each frame. Intuitively,
this matrix assigns higher weights to locations less probable
to contain MBs, thus forces the sparse recovery process to
favor specific locations in the frame, which are more likely
to contain the MBs. In practice, (4) is minimized using the
fast iterative/shrinkage thresholding algorithm (FISTA) [35],
[36], described in Algorithm 1, or by using the reweighted
iterative /1 method [37] (we project to the real numbers to
avoid residual imaginary errors in the estimation of x4, as i
is a real quantity). Algorithm 1 is applied for each frame in
the movie separately.

In Algorithm 1, L ¢ is the Lipschitz constant of the quadratic
term of (4), readily given as the maximum eigenvalue of H7H,
and 7, is the soft-thresholding operator, defined as

To(x)[i] = max (0, |x;| — a;) - sign(x;)

where « and x are the vectors of the same length.
We next describe how to construct Wy per frame using MBs
trajectories, Kalman filtering, and OF.
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C. Microbubble Tracking

The (diagonal of the) weighting matrix Wy is inversely
proportional to the accumulated probability of detected MBs
from the (k — 1)th frame to be found in new locations in the
kth frame. Its construction requires identifying and tracking
individual MBs, as shown in Section II-D. We now turn to
explain this process. First, the state of the pth MB in frame k
is defined as s; € R* with

sp = [xlsoxfs vl o]
Here, x,f and y,f are the Cartesian coordinates that indicate
the position of the pth MB in frame k, and z)xf and vy,f its
respective velocities. The accumulation of all states of the pth
MB from frame 1 to frame K, T? = [sf, R sf( ] € R¥*Kp,
is referred to as the track of the pth MB.

To proceed, consider an arbitrary frame, k. At this stage,
we posses all the states of Py_j previously tracked MBs,
St seees s,ffll. Given the next low-resolution frame zx, our
main two goals are the following.

1) Recover the locations of the Ly MBs which are embod-
ied in frame z;. The number L; of MBs in frame
k is generally different than the number of MBs in
the previous frame Lj_;. This possible discrepancy
occurs since blood vessels have a 3-D topology, and
consequently MBs may shift in and out of the imaging
plane.

2) Associate each newly detected MB to a previously
known track, or open a new track if no such association
is possible. This enables constructing the weighting
matrix Wy by propagating the tracks of individual MBs,
while providing the estimation of MB velocities.

The tracking and association process is illustrated in Fig. 3.
The output of Algorithm 1 is the (k — 1)th superresolved
frame, iy, whose nonzero values correspond to the positions
of the MBs present in this frame. Next, given all previously
known tracks T!, ..., TP1, these positions need to be asso-
ciated with the tracks. The updated tracks are essential to
the formulation of Wy. The goal of the uppermost block
in Fig. 3 is to associate each individually detected MB to
one of the known Pj_; tracks, or to open a new track if no
such correspondence is found. Specifically, this matching and
association process is realized using the multiple hypothesis
tracking (MHT) procedure.

The MHT algorithm, as first suggested by Reid [38], is con-
sidered one of the most popular data association techniques
[28] and has been applied to a wide variety of multi-target
tracking problems [39]. The key idea in MHT is to produce
a tree of potential hypotheses for each target, in our case MB
locations. Upon receiving new measurements, the likelihood
of each possible track is calculated and the most likely
tracks are selected. This can be performed by formulating
and solving the maximum weighted independent set [40],
[41], for example. The likelihood calculation relies on all past
observations of each target [40]. The MHT algorithm is known
to produce good data association results due to its pruning
stage. Ambiguities are assumed to be resolvable when new
data are acquired. As such, given the latest measurements in
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Super-resolved frame Iy
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Updated tracks T*, ..., TFx

and states s',...,s*

‘Weighting matrix
generator

MB tracks T, ..., T

Propagation weighting
matrix for frame k, W,

Fig. 3. Automatic tracking and data association procedure (detailed building
blocks of the “automatic tracking algorithm” block in Fig. 2). New detected
MBs from the (k — 1)th superresolved frame are associated with previously
known Pj_ tracks, or open new tracks, while nonassociated tracks are closed
(uppermost block, realized by the MHT algorithm). Then, using the Kalman
filtering, these new Py tracks are propagated to the next frame (central block).
Estimated velocities in the xy plane (Vy,_;,V,, ) using OF on the low-
resolution k — 1 frame are associated with the newly detected MBs and used
as measured velocities for the Kalman filter update. Thus, an updated track
estimation is produced. Finally, the propagated tracks form the weighting
matrix Wy (lowest block). The tracks serve as inputs to the algorithm in the
next frame, when new localizations arrive, and the tracking and association
process repeats itself.

frame k, the method estimates the likelihood based upon J
previous measurements (where J can be controlled) to resolve
past ambiguities in the (k—J)th frame irrevocably, and updates
all tracks accordingly for the current frame. Thus, data-to-
track association decisions are always based upon previous J
frames, in a sliding-window manner. An example of associated
track numbers to new localizations is presented in Fig. 4 (left).
In practice, we use the Lisbon implementation, taken from
[42], [43], which offers full integration into the MATLAB
environment. Due to its flexibility, the integration of this
implementation with the specific problem at hand, in this case,
2-D tracking of MBs, is easy and fast.

At the end of this association stage, existing tracks have
been assigned new measurements (MBs positions and veloci-
ties), and new tracks are generated, if new MBs were detected.
If an existing track was not updated, then this track is closed
and cannot be further updated, indicating that the individual
MB of this track is no longer present in the movie. The next
stage of 3SAT is measurement integration with corresponding
tracks, and propagation of the updated tracks to frame k.

Track update and propagation is performed by applying
Kalman filtering to each track, individually. Individual tracks
represent the history of each detected MB. This history helps
propagate the MBs to the next frame more accurately and
to obtain improved velocity estimation. To this end, consider
the pth track. We assume a linear propagation model for the
locations of the individual MBs between consecutive frames
given by

= osl ©
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Fig. 4. Example of association of new measurements to existing tracks (left).
In each frame, detected MBs are associated with track identification numbers
that correspond either to existing or new tracks (MB to tracks association block
in Fig. 3). Thus, the association of new data points to tracks occurs. Red box:
enlarged area. MBs were smoothed slightly for visualization purposes only.
An example of the (diagonal of the) weighting matrix Wy presented as an
N x N image (weighting matrix generator block in Fig. 3) (right). Darker
areas (lower values) correspond to more likely positions for MBs, and thus
these pixels are given lower weights.

where
1 AT 0 O
0 1 0 O
=10 0o 1 ar
0O 0 O 1

with 1/AT being the frame rate of the US machine. Model (5)
corresponds to the discretized version of the continuous
white noise acceleration (CWNA) model, or second-order
kinematic model [44]. Ideally, a constant velocity model has
zero acceleration, or zero second-order derivative. In practice,
CWNA assumes that the velocity of each MB has slight
perturbations, described by zero-mean white noise with power
spectral density p. In (5), this uncertainty is captured by
the zero-mean additive Gaussian noise vector n,f , associated

T
with a covariance matrix E{n! 117,1: } = QF. Following [44],
the CWNA covariance matrix Q; is given by

1/3AT? q1/2AT? 0 0
Q= 1/2AT? AT 0 0 )
k 0 0 1/3AT? 1/2AT?
0 0 1/2AT? AT

where p is chosen empirically.
The measurement model for the pth MB is then given by

vyl =sb  +¢f (6)

where ;,f is zero-mean independent i.i.d. Gaussian noise with

covariance matrix E{¢ ¢! T} = Ry In practice, this matrix is
chosen to be diagonal. As R,f is data dependent, the values
of the diagonal are chosen empirically based on the expected
velocity magnitudes of individual MBs in the data. As val-
idation, these numbers are also compared with simulations
of similar velocity magnitudes distribution, as exemplified in
Section IV, Fig. 4.

From the superresolved image iy, we measure the position
of the MBs. Specifically, consider an MB which is detected
in position [nyAx,nyAy], where Ay and Ay are the known
sizes of each pixel in the superresolved image and [ng, ny]
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are some integers. If the MHT algorithm decided that this
MB belongs to the pth track, then y,f[l] = nxAyx and
yF[3] = ni Ay. The velocities of the MBs, or y/'[2] and y} [4],
are measured using OF estimation [23] on the low-resolution
movie frames, as will be described in Section II-E.

The Kalman filter update rules are now formulated based on
the propagation (5) and the measurement (6) models. MB state
propagation to the next frame and its corresponding propagated
estimation covariance matrix are given by

p p
Stik—1 = PSp_1k—1

p P T P
Py = @Pp 1@ + Q. )

Using (7), the weighting matrix Wy is calculated as described
in Section II-D. Next, (4) is minimized to recover the kth
superresolved frame, ir. After the association process is fin-
ished, for each track, we update its last state via the Kalman
filter equations. The Kalman gain is given by

—1
K/f = Plflk—l (Plf\k—l + le) ()

and the innovation step along with the updated estimation error
covariance matrix are

PP PP _ P
Stk = Sep—1 T Ky (¥ — Sklkfl)
Pl = (Lixa — K{)P{_ ;. ©)

From the innovation step (9), the states are updated as s,f =
s,flk with estimation covariance matrix P} = P,f‘ .

D. Weighting Matrix Formulation

After the states for all MBs are propagated using (7) and
associated with existing or new tracks, we turn to formulate
the weighting matrix Wy, as illustrated in Fig. 3 (bottom).
The propagated state s,f‘ «—1 Tepresents the position and veloc-
ity of the pth MB and has its associated estimation error
covariance matrix P,fl «_- Based on state predictions, a spatial
MB-likelihood map J; is formulated, by assigning proba-
bilities drawn from an anisotropic Gaussian distribution of
which the mean and covariance are dictated by their respective
predictions/updates in the Kalman framework. This process is
illustrated in Fig. 5.

By aggregating the estimated positions and Gaussians of all
of the Py_; propagated MBs, a spatial map of their possi-
ble true locations on the high-resolution grid is constructed,
denoted as Ji. The ijth element of this N x N matrix is
expressed as

o e () ) o))
Jeliy 1= APe \%
p=l

(10)

with AP = (122, D', [xg, yg1 = [sfje_ (11, 55, (310,
of =Pl [1,11, 0f = Pl _,13,3], ¢ = 1/Q2(1 — pP?)),
c? = 2p?/(alcl) and pP = Plﬁkil[l,S]/(afa}{)). The
diagonal of the weighting matrix Wy is the inverse of the
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Fig. 5.  Generation of the weighting matrix Wy [as described in (10)
and (11)]. Previously estimated state Sf—l\ r—1 18 propagated to state sf‘ 1
according to (7). Its propagated error covariance matrix Pf‘ r—1 18 then used
to draw an ellipse around its location, where zrf = P,f‘ 1111 and af =
P,fl «—113,3]. Aggregation of all propagated uncertainty ellipses generates an
image of possible MBs locations. The matrix Wy is proportional to the inverse
of this image.

Algorithm 2 3SAT
Require: Low-resolution movie Zy, k= 1,..., K
Initialize W = I, 2
Perform sparse superresolution on z; using Algorithm 1
for k=2,...,K do
Given z; and Wy_, perform sparse super resolution on
z; using Algorithm 1 and estimate iy
Estimate OF on z; using MATLAB’s opticalFlow com-
mand and estimate velocity components Vy, and Vy,
Given i, Vy, and Vy,, construct new measurement vectors
for all P; detected MBs yf, p=1,..., P
Associate yf to existing tracks T”, p = 1,..., Piy/open
new tracks/close old tracks using the MHT algorithm
(Fig. 3)
Update last state of existing/new tracks T” using (9)
Propagate last state of existing/new tracks T? with (7)
Given the updated tracks, construct weighting matrix Wy

using (11)
end for
return Super-resolved frames ix,i = 1,..., K and MB
tracks T!, ..., TP«

vectorized form of J; plus a regularization value €, to avoid
division by zero

1

N2
mod N)]+¢€’ ’

Y

Wili,i]l =

Jelli/N1, (i i=1,...

where |-] is the floor operation and (x mod y) is the modulo
operation with the swap 0 — N. An illustration of such a
weighting matrix can be observed in Fig. 4 (right). Vectoriza-
tion of this N x N image is the diagonal of W;. The main
building blocks of 3SAT are described in Algorithm 2.

As noted before, in (6), we assume that we measure not
only the positions of detected MBs but also their velocities.
We now turn to describe how this velocity measurement is
performed.
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E. Velocity Regularization Via Optical Flow Estimation

To improve the tracking procedure of individual MBs,
velocity measurements are provided to the Kalman fil-
ter as part of the input to (6). This is done by OF
estimation [23]-[26] from the low-resolution movie. Although
the formulation originates from the low-resolution movie,
in which individual MBs are not separable, this added velocity
information helps in regularizing the tracking of individual
MBs. Consider, for example, a newly detected MB. This
MB has a single position measurement. Without additional
information on its general direction of movement, the tracking
filter will propagate the MB to a position, which, in general,
is not related to its actual position in the next frame. If, on the
other hand, additional information in the form of its coarse
velocity is available, then the filter will propagate the MB to
a location in which the MB is more likely to be detected in
the next frame.

OF estimation methods are easily implemented using the
opticalFlow command in MATLAB. We achieved good per-
formance with the method of Lukas and Kanade [26] with
a Gaussian smoothing kernel and a standard deviation of
1.5 pixels.

In practice, each low-resolution frame Z is first interpolated
to the size of the N x N superresolved images Iy, and OF
estimation is performed subsequently. This procedure ensures
that each pixel in the superresolved image is associated with
a velocity vector from its corresponding interpolated low-
resolution frame. Together, the obtained velocities are con-
sidered as measurements for the Kalman filter, along with
MBs localizations from the superresolved frame I;. Formally,
the xy velocity fields obtained by OF estimation over the
interpolated low-resolution frame Z; are denoted as V,, and
V,,. That is, both Vy, and V,, are N x N matrices, and each
of their pixels correspond to the pixel-wise lateral and axial
estimated velocities, respectively. Next, for MBs detected in
pixels [i, jp] from I, we associate the corresponding velocity
values from Vy, and Vy,

v 121 = Vylip, jp]

Y4l = Vylip, jpl p=1,..., P (12)
Thus, the first and third entries of the measurement vector y,f
in (6) represent the measured position of the pth detected MB
in the kth frame, and the second and fourth entries represent
its measured velocity.

Note that OF estimation is performed on the low-resolution
movie and not on the superresolved frames, as the basic
assumption of OF, known as the pixel intensity consistency
assumption [24] does not hold on the superresolved images.
This is because a typical superresolved image looks like the
image displayed in Fig. 4 (left). The enlarged box shows
the localization of three MBs (smoothed only for display
purposes). Typically, in the next frame, these MBs move con-
siderably, which prevents reliable OF estimation. In contrast,
a much more reliable OF estimation is achieved on the low-
resolution images due to the spreading of the echoes from the
MBs over several adjacent pixels.
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Simulation results. (a) Groundtruth image of bifurcating blood vessels. (b) Superlocalization reconstruction. (c) Superresolution sparse recovery

obtained by minimizing (3) via FISTA. (d) 3SAT recovery by accumulating all recovered MB trajectories. (e) Superimposed velocity trajectories over the MIP
image obtained from the 3SAT recovery. Yellow lines: selected profiles are presented in Fig. 7. All reconstructions are displayed in logarithmic scale with a

dynamic range of 40 dB.

Since the velocities are measured on the low-resolution
images, from non-resolved MBs, they do not represent the
velocities of individually resolved MBs. Instead, they consti-
tute a coarse, low-resolution estimate of the average velocities
from the nonresolved MBs. As such, the velocity measure-
ments are weighted with ten times larger values in the covari-
ance matrix R,’: than the position measurements.

III. MATERIALS AND METHODS

A. Numerical Simulations

Using MATLAB, we simulate a bolus injection of 140 MBs
into vascular bifurcations over an acquisition period of 96
frames, with the frame rate of 10 Hz (total acquisition time
is 10 s), and pixel size of 0.15 x 0.15 mm?. Acquisition of
the MBs was simulated by summing RF-modulated PSFs for
each of the MB locations. RF lines were subsequently demod-
ulated using the Hilbert transform. Images were formed by
subsequentially taking the absolute value of the demodulated
data. The received modulation frequency is 7 MHz (second
harmonic of 3.5 MHz, similar to our in vivo acquisition
setup), with a Gaussian PSF having a standard deviation of
0.14 mm in the axial direction and 0.16 mm in the lateral
direction. The entire acquisition process was approximated by
a linear mapping from MB locations to beamformed image,
through the PSF. The extracted second harmonic component
was simulated through the use of an RF modulation at that
frequency. MBs flow from the highest point of Fig. 6(a)
down to the terminals of all branches. To simulate the bolus
injection, the probability for an MB to appear at the point of
origin follows a Gaussian distribution in the following manner.
MB velocities’ magnitudes and directions were generated by
taking the maximum between values drawn from a normal
distribution with a mean of 1 mm/s and standard deviation
of 1 mm/s, and zero, to avoid negative magnitude values.
Additive white Gaussian noise with a standard deviation
of 0.03 was added.

We set P = 8 and recover the superresolved images
on an eight times denser grid than the low-resolution grid.
The regularization parameter was chosen to be 4 = 0.002.
We iterate over 4000 iterations per frame and set ¢ = 1,
p = 260, and Ry = diag{0.1, 1, 0.1, 1}. In the MHT algorithm,
the probability for not detecting an existing target was chosen
as 0.1, the probability for a new target to appear is 0.2, and

the probability for false alarm is 0.01. A maximum number
of six leaves are used.

B. In Vivo Experiments

The CEUS data of a human prostate from a patient who
underwent radical prostatectomy were acquired at the AMC
University Hospital (Amsterdam, the Netherlands), using a 2-
D transrectal US probe (C10-3v) and an iU22 scanner (Phillips
Healthcare, Bothell, WA, USA). The scanner operated in a
contrast-specific mode at a frame rate of 1/AT = 10 Hz
with central transmission frequency of 3.5- and 7-MHz central
frequency upon reception of the second harmonic. A 2.4-mL
MB bolus of SonoVue (Bracco, Milan, Italy) was administered
intravenously, and 100 frames (10 s) were collected for further
analysis. The pixel size is 0.146 x 0.146 mm? and the mechan-
ical index was set to 0.06 to attain sufficient SNR, while
limiting MB destruction [45], [46]. The study was approved
by the local ethics committee of the Academical Medical
Center, University Hospital of Amsterdam, the Netherlands.
All patients signed informed consent.

We consider two examples taken from the in vivo scan. For
all experiments, we set P = 4 and recover the superresolved
images on four times denser grid than the low-resolution grid.
Since variations in PSF shape and orientation are inevitable
over large fields of view, as in the case when scanning with
a transrectal probe, for each case, the PSF was estimated
separately. In both cases, we use 2000 iterations per frame,
€ = 0.5, p = 500, and Ry = diag{0.1, 1,0.1, 1}. For both
examples, in the MHT algorithm, the probability for not
detecting an existing target was set to 0.1, the probability
for a new target to appear to 0.5, the probability for false
alarm to 0.01 and a maximum number of leaves to 6. All
superlocalization reconstructions were performed after apply-
ing wavelet-based denoising to suppress residual tissue signal,
as the power modulation scheme does not remove the tissue
signal completely. Without this denoising step, many false
positive detections were observed. FISTA and 3SAT recoveries
were performed on the separated CEUS signal, without any
prior denoising.

IV. RESULTS

A. Numerical Simulations

Fig. 6 shows the reconstruction results of the simulated
data set of flowing MBs within a simulated vascular net-
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Fig. 7. (a) Intensity profiles (a.u.) taken along the yellow lines in Fig. 6.
(b) Intensity profiles (a.u.) taken along the yellow lines in Fig. 10.

work. Fig. 6(a) shows the groundtruth architecture, while
Fig. 6(b)—(d) shows the reconstruction results of superlocaliza-
tion [47], sparsity-driven superresolution [20] [minimizing (3)]
and 3SAT, respectively. Fig. 6(e) shows an overlay of MB
trajectories, colored by their estimated velocities over the
maximum intensity projection (MIP) image.

Visual inspection reveals that 3SAT recovery [Fig. 6(d)]
seems the smoothest and most continuous, that is depict-
ing a more complete image of the underlying vascular net-
work, compared with the superlocalization (which seems
very discontinuous and includes false positive detections) and
sparsity-based reconstructions, depicted in Fig. 6(b) and (c),
respectively. The green arrow in Fig. 6(a) indicates a bifurcat-
ing blood vessel, which is almost nondepicted in the super-
localization image Fig. 6(b) and is discontinuous in Fig. 6(c)
of the sparsity-driven approach. Conversely, 3SAT Fig. 6(d)
detects this blood vessel completely, showing a continuous
connection to the main blood vessel. The red arrow indicates
another example of clear bifurcation depictions by 3SAT,
which are discontinuous in the other reconstructions.

Fig. 6(e) shows that the estimated velocities are in the
range 0-3 mm/s. A histogram of the measured velocities is
shown in panel (c) of Fig. 11, where the velocities distribution
is indeed between O and 3 mm/s. This histogram is compared
with the scaled (truncated) Gaussian distribution from which
MB velocities where generated (solid transparent curve).
A good match between the two distributions is achieved,
validating the performance and reliability of 3SAT.

In panel (a) of Fig. 7, selected intensity profiles
(a.u.) were measured along the dashed yellow lines
in Fig. 6(a), (b), and (d). In this example, it is evident that
the 3SAT profile detects the two peaks (vessel branching)
also present in the ground truth, with good agreement, while
the superlocalization procedure fails to detect the rightmost
peak. This situation is expected since most frames consist
of overlapping MBs, especially at bifurcations. In scenar-
ios of extensive overlap, superlocalization tends to result in
aggregations of detections, often leading to mis-detections of
nearby vessels, as opposed to sparsity-based techniques that
are designed to account for this overlap. Table I gives the
comparison of the peak-to-peak distance for the bifurcations
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TABLE I

PEAK-TO-PEAK DISTANCES FOR THE INTENSITY PROFILES IN FIG. 6
(FOR 3S AT, WITHOUT/WITH POSTPROCESSING SMOOTHING)

| | ground truth | 3SAT | Super-localization |

| Solid line [um] | 715 | 82.8/95 | — |
1 ~
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Fig. 8. MIP image of the in vivo prostate scan used in this study
(left). Right rectangle: first examined the area of the prostate (Fig. 9). Left
rectangle: second area (Fig. 10). Time—intensity profile calculated as the mean
frame intensity as a function of scan time (right). Red highlighted region:
processed time segment in both examples. This area exhibits recirculation of
MBs in the patient’s bloodstream. Time—intensity curve for the right rectangle
is shown in Fig. 12(d), while the corresponding curve for the left rectangle
is shown in (e).

along the yellow lines in Fig. 6, as measured in the ground
truth image, superlocalization, and 3SAT recoveries. Imaging
at 7 MHz, the imaging wavelength Ag is 220 um (speed of
sound 1540 m/s). A common measure of resolution is the full-
width-at-half-max (FWHM), which for a Gaussian function is
approximately 2.355¢, or in case of the simulation 330 um
in the lateral direction. Thus, the values attained by 3SAT,
in this example, correspond to a separation distance smaller
than A¢p/2, and 3.5-4 times improvement in the FWHM,
demonstrating that 3SAT achieves subwavelength imaging.

B. In Vivo Experiments

In this section, we present in vivo reconstruction results
of 3SAT. US acquisition parameters and reconstruction para-
meters are given in Section III. Fig. 8 (left) shows the MIP
image of the entire prostate, while the rectangles correspond to
the selected processed areas. In this study, we focus on selected
patches and do not process the entire aperture of the prostate,
since we use a curved transrectal probe which spans a wide
field of view (FOV). Since the FOV is large, the PSF depends
on the scanned region (e.g., the PSF for the right rectangle is
not the same for the left one). A main assumption we make
is that of a linear, shift-invariant acquisition model, hence we
process smaller patches over which this assumption seems to
hold. For each processed area the PSF is estimated from the
data, independently. The right figure shows the time—intensity
curve calculated as the mean intensity at each frame from
the entire FOV. The red area marks the observation window
over which processing is performed. This time span was
chosen during the wash-out phase of the MBs but also exhibits
recirculation of MBs and an increase in MB concentration at
the beginning of the acquired period.
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Fig. 9.

3SAT applied to an in vivo scan from a human prostate. (a) MIP image from 100 frames. (b) Superlocalization recovery. (c) Superresolution sparse

recovery obtained by minimizing (3) via FISTA. (d) 3SAT recovery by accumulating all recovered MB trajectories. (e) Superimposed velocity trajectories
over the MIP image obtained from the 3SAT recovery. All images are displayed in logarithmic scale with a dynamic range of 30 dB.

Fig. 10.

w

N
[mm/s]

Additional example of 3SAT recovery of an in vivo human prostate scan. (a) MIP image from 100 frames. (b) Superlocalization recovery.

(c) Superresolution sparse recovery obtained by minimizing (3) via FISTA. (d) 3SAT recovery by accumulating all recovered MB trajectories. (e) Superimposed
velocity trajectories over the MIP image obtained from the 3SAT recovery. All images are displayed in logarithmic scale with a dynamic range of 30 dB.

Figs. 9 [right rectangle in Fig. 8 (left)] and 10 [left rectangle
in Fig. 8 (left)] compare between different reconstructions in
two areas of a prostate CEUS scan. In both Figs. 9 and 10,
(a) shows the MIP image. This image is diffraction limited
and was generated as reference for standard non superres-
olution image processing by taking the pixelwise maximum
value over the entire movie. Fig. 9(b) shows the resulting
superlocalization-based image, by localizing individual MBs
per frame. Fig. 9(c) depicts sparsity-based superresolution as
obtained by minimizing (3) via FISTA, while Fig. 9(d) shows
the 3SAT output. Finally, Fig. 9(e) displays an overlay of the
estimated velocities’ trajectories on the MIP image.

We first consider Fig. 9. By qualitative consideration,
the comparison of (b)—(d) and (a) shows that all methods seem
to achieve superresolution, with a relatively good agreement
among them. That is, main superresolved features seem to
be present in all three methods, such as a small vertical
blood vessel located at the bottom left portion of the images
of (b)—(d). However, the 3SAT image (d) qualitatively appears
smoother and more continuous, showing distinct trajectories
that are absent in the sparse recovery and superlocaliza-
tion images. These consist of a larger set of disconnected
and isolated MBs. Moreover, Fig. 9(e) presents the veloc-
ity magnitude estimations from the tracked MBs. The vast
majority of obtained MB flow velocities are on the order of
up to 1-2 mm/s, in line with the previous observations on
blood flow in microvessels [15]. This is also confirmed by
the velocity magnitude histograms, displayed in Fig. 11(a).
However, additional higher velocities up to ~4 mm/s are also
observed. Such velocities may correspond to larger vessels,
with increased flow.

Experimental 1 Experimental 2 Simulation
57 1525 127
(a) (b) (c)
29 763 64
0 0 0
01 2 3 4 01 2 3 4 0 1 2 3
Velocity [mm/s] Velocity [mm/s] Velocity [mm/s]
3.8785 1760 2.10396 8 17.6324
(d) (e) ()
36 880 4
0 0 0
0 10 20 30 0 10 20 30 40 0 25 50

Track length Track length Track length

Fig. 11. Top row: estimated velocity histograms. (a) Experimental data set
shown in Fig. 9. (b) Experimental data set shown in Fig. 10. (c) Simulation
data set shown in Fig. 6. Transparent solid curve indicates a scaled Gaussian
distribution with mean and standard deviation of 1. Bottom row: track length
histogram of corresponding data sets. (d) Experimental data set of (a).
(e) Experimental data set of (b). (f) Simulated data set of (c). Track lengths
are measured as the number of measurements associated with each track.
Numbers correspond to the mean track length of each histogram.

Considering Fig. 10(b)-(d), qualitatively show once more
superresolution imaging of the prostate vasculature, compared
with the MIP image of (a). These figures further support
the conclusions drawn in Fig. 9. In this example, we also
quantify the resolution increase of superlocalization and 3SAT,
compared with the MIP image. The yellow lines indicate
a selected intensity profile of a blood vessel. This vessel
can clearly be seen in the MIP image. Fig. 7(b) shows the
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Fig. 12. Detected MBs per frame for both experimental data sets shown in (a) Fig. 9, (b) Fig. 10, and (c) simulation. (d)—(f) Corresponding time—intensity
curves for each scan. These curves were calculated as the framewise mean pixel intensity over time.

corresponding intensity profiles of the MIP, superlocalization,
and 3SAT recoveries (arbitrary units, intensity normalized to
one). Both superlocalization and 3SAT achieve narrowing of
the blood vessel contour, as compared with the MIP profile
(blue solid line).

Fig. 10(e) depicts pointlike and short trajectories, with
low velocities, alongside longer and smoother trajectories.
Such pointlike trajectories are attributed to the fact that the
vascular bed of the prostate is inherently 3-D, with many
blood vessels crossing the imaging plane of the probe. Thus,
lateral and axial velocities (with respect to the transducer
position) of MBs flowing within these blood vessels can be
small. In contrast, the simulated MBs in Fig. 6 are simulated
in a plane and clearly show long and smooth trajectories.
Further quantification is also shown in Fig. 11(d)—(f), showing
a histogram of track lengths (bold numbers of above these
figures indicate mean velocity length), in which larger track
lengths are observed in the simulation, and shorter lengths in
the experimental data sets.

We further quantify the number of detected MBs in each
frame, for each of the superresolution methods discussed
above. Fig. 12(a)—(c) indicates the number of detected MBs
per frame for the experimental data presented in Figs. 9 and 10
and the simulation shown in Fig. 6. The lines indicate the
number of detected MBs for 3SAT (solid blue), sparsity-based
superresolution via FISTA [dash-dot orange, (a) and (b)] and
superlocalization (dot brown). The dash-dot orange line in (c)
indicates the ground truth number of MBs in the simulation.

Considering (a), it is evident that all three methods perform
similarly, and detect a similar number of MBs in each frame.
In this case, MB density is such that all methods perform
similarly. On the other hand, (b) shows an increasing number
of detected MBs for all the methods. After ~35 frames, 3SAT
clearly detects more MBs compared with superlocalization and
FISTA-based sparse recovery (first ~10 frames show higher
detection rate for superlocalization, but this is likely the result
of false detections due to residual tissue signal or noise in the

CEUS data). This scan was taken during the wash-out phase of
MBs circulation; however, the increase in detections indicates
that this data is a part a recirculation of the MBs, in which
MB concentration increases as time progresses. The simulation
corresponding to (c) simulates the entire circulation of MBs
in the blood steam, from the wash-in phase up to the wash-
out phase. Fig. 12(c) shows that 3SAT is able to consistently
detect more MBs, achieving an improved estimation of the
number of MBs per frame, as compared with the ground truth
curve. The discrepancy between the ground truth and 3SAT
curves is due to aggregated MBs, which cannot be resolved
by any of the methods. In (c), corresponding detections of the
FISTA method are not displayed due to a high rate of false
detections.

Fig. 12(d)-(f) shows the corresponding time—intensity
curves for each scan, measured as the framewise mean pixel
intensity over time. In [48], a linear relation between the
intensity and MB concentration was verified for concentrations
up to 1 mg/L. Visual inspection shows that the time—intensity
curves in the bottom figure correlate with the 3SAT curves in
the corresponding (a)—(c), further supporting the conclusion
that 3SAT accurately detects the number of MBs per frame,
as compared with superlocalization, for such concentrations.
Most notable is the curve in (e), which matches that of 3SAT,
showing an increase in MB detections over time. Furthermore,
it shows that indeed the high number of detections by the
superlocalization method in the first ~10 frames is most likely
the result of false detections.

All panels support the conclusion that at low MB concentra-
tions (~2-3 MB/mm?), 3SAT performs similar to superlocal-
ization, but exhibits improved performance, when the density
increases (~10 MB/mmz), which is about 3 — 5 times denser
MB concentration.?

2Concentration values were measured by dividing the number of detected
MBs per frame with each respective FOV.
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V. DISCUSSION AND CONCLUSION

This is the first work to exploit the inherent motion kinemat-
ics of individual MBs as a structural prior for superresolution.
Since individual MBs flow within blood vessels, their positions
can be predicted from one frame to the next. 3SAT exploits this
additional information to improve sparse recovery, by solving
a support aware minimization problem, as formulated in (4).
Using Kalman filtering, 3SAT is able to track and propagate
the trajectories of individual MBs from one frame to the
next. Moreover, we introduce velocity measurements via OF
estimation to improve the tracking process for superresolution
imaging. In a recent study, de Senneville ez al. [49] introduced
a similar concept of MB transport to quantify the velocity
amplitude of bolus arrival in CEUS as a diagnostic tool.
3SAT extends these ideas by relying on OF as measure-
ments, while estimating individually resolved MBs’ velocities.
Figs. 9 and 10 show the power and potential of 3SAT on
in vivo data. Both clear and smooth superresolution imaging
are achieved, as well as a quantitative measurement of the
flow velocities of individual MBs, quantification of resolution
enhancement and MB detection rates. This study shows that
the 3SAT approach achieves a higher and more accurate detec-
tion rate of MBs than the superlocalization-based approach,
when MB density increases, as depicted in Fig. 12.

3SAT operates well with high MB concentrations
(e.g., ~10 MB/mmz), for which significant MB overlap is
present, as quantified in Fig. 12. However, the detection rate
of MBs is noise dependent. In very noisy scenarios, 3SAT
is not guaranteed to recover all individual MBs, although in
the experiments showed in this paper, detection rates are high.
By exploiting the sparse nature of the individual MB echoes,
3SAT is able to depict the vasculature with a relatively low
number of frames. In our in vivo experiments we used two
data sets of 100 frames. However, as MB density increases
even further, several mechanisms of 3SAT may fail. First,
the sparse-recovery algorithm may not be able to accurately
detect and localize all of the MBs in each frame. Second, MHT
data-to-track association may also fail to properly associate
new localizations to existing tracks, as resolved MBs become
extremely close to one another. Moreover, high MB velocities
relative to the scanner frame rate may also limit the correct
association of MBs to tracks. Finally, OF estimation will fail
to produce reliable results in areas of many overlapping MBs
which move in different directions, resulting in an almost-zero
averaged velocity estimate on the low-resolution grid. Reduc-
ing the frame rate even more will also cause OF estimation and
MHT data-to-track association to fail. The former, since the
basic assumption of pixel intensity consistency breaks down
as the frame rate decreases. The latter, since the association of
new measurements to existing tracks becomes less likely than
the opening of new tracks, even if they belong to previous
tracks. Yet, as reported in this work, for clinical bolus doses
and 10-Hz scanners, 3SAT depicts a smoother and more
consistent vasculature and is able to detect more MBs than
the state-of-the-art techniques in high concentration scenarios.

As can be observed in Fig. 8 (right), the processed acquisi-
tion period was taken during the wash-out phase of the MBs.
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This period was chosen, and correspondingly the two subre-
gions, in order to test the performance of 3SAT in relatively
low and constant densities (Fig. 9) and in higher densities
(Fig. 10). In Fig. 10, recirculation of MBs appears, showing an
increase in MB signal and density. These two subregions serve
to assess 3SAT in both scenarios and compare its performance
to superlocalization. In fact, Fig. 12 demonstrates both in
vivo and in silico that as MB density increases, 3SAT is
able to reliably recover more MBs than superlocalization.
Furthermore, since the removal of tissue signal is not perfect,
it seems that superlocalization is more prone to false detections
than sparsity-based approaches. This happens since sparsity-
based approaches use explicit information about the measured
PSF, whereas superlocalization does not.

Velocity estimates of 3SAT may vary when considering
different periods during the entire MBs circulation period.
This may happen as MB velocities may differ during the
wash-in and wash-out phase. Furthermore, considering longer
acquisition periods may reveal finer blood vessels as statis-
tically, the likelihood of MBs to flow through these vessels
increases. However, such longer durations may lead to poorer
MB detection and velocity estimation, as motion becomes
more dominant and the registration process might fail. Min-
imization of these errors further motivates the use of high
MB concentrations and the development of methods which
can compensate for MBs overlap, such as 3SAT.

In [19], a similar model to (1) was introduced over the
beam-formed complex in-phase and quadrature signal (in
which acquired echoes from different MBs are superimposed
together), while this work assumes such a model over the
real-valued intensity images. Although intensity images are
formed through a nonlinear operation of envelope detection,
in practice, both in simulations and in vivo experiments,
we observed good reconstruction performance using model
(1), as presented in Section IV.

The use of a Kalman filter for MB tracking has two main
motivations. First, the Kalman filter is an online estimator,
which is suitable for real-time applications. Using this filter
for online tracking of MBs can lead to a real-time clinical
application of 3SAT. Second, it is known that capillary flow
is nonturbulent [8], [22]. Thus, a simple linear propagation
model is reasonable for the tracking procedure.

There are several limitations to 3SAT. The first is inherent
to all US superresolution techniques. MBs must flow through
the vasculature in order to detect it, thus setting a minimal
acquisition time for any superresolution imaging technique.
In 3SAT, by using high-concentration bolus doses and sparse
recovery, we reduce the acquisition time, but only to the degree
that MBs flow within the finest blood vessels during that
period.

Second, 3SAT includes several parameters which should be
selected properly, among which are the sparsity regularization
parameters A, €, p and the probabilities for the MHT algo-
rithm. In this work, these parameters were chosen manually,
but according to some important guidelines. Typically € should
be relatively small, similar to the values we chose, to avoid
numerical errors, but ultimately may vary from one scan to
the other. Next, the second and fourth entries of the diagonal
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of Q,f correspond to the variance of the velocity estimates
in the x- and y-directions, respectively. Therefore, in fact,
the standard deviation of each velocity estimate is proportional
to (ATp)'/2. This suggests guidelines to the determination
of the power spectral density of the noise, p. In our in vivo
examples and based on past literature, see [22], we know that
blood flow in small vessels is typically 0-2 mm/s and can be
higher (e.g., 4 mm/s as we measure in some parts of our in
vivo examples) in larger vessels. Thus, p is set according to the
expected velocities in the imaged medium. Since AT = 0.1 s,
choosing p = 500 results in a standard deviation of 7 mm/s,
which accommodates for slight variations in the estimated
velocity values of our model. The probabilities for the MHT
algorithm were chosen to be similar to those specified in the
MATLAB example provided with the code package.

The selection of the parameter A corresponds to the given
SNR and the number of expected MBs in the image. This
number can of course change between the wash-in and wash-
out phases of MBs flow, as MB concentration changes. In our
experiments, this parameter was chosen according to an upper
bound on the expected number of MB per mm?. However,
this number can also change between scans of different
organs or different parts of the same organ, and in this case,
additional validation and testing will have to be performed.

As was also mentioned in [8], 3SAT is designed to work
with 2-D images but is affected by the inherent 3-D geometry
of blood vessels going in and out of the imaging plane. Thus,
some of the detected MBs cannot be tracked over several
consecutive frames, resulting in single detections, as was
presented in Figs. 9 and 10. This is an inherent limitation to
all 2-D-based superresolution techniques. It can probably be
alleviated with the introduction of 3-D probes and volumetric
scans, which will enable 3-D tracking of individual MBs.

Before concluding, we would like to discuss some com-
putational aspects of online sparse tracking, as the number
of detected MBs grows. Angelosante et al. [32] suggested an
[1 relaxed adaptation of the Kalman filter to account for the
possible exponential growth in computational complexity with
the problem dimensions. In practice, although 3SAT applies
Kalman filtering to each detected MB, this computational
growth was not observed to be dramatic, even when tens of
MBs were tracked simultaneously. We ascribe this to the fact
that the state of each MB is relatively low dimensional (four
entries of positions and velocities), so that matrix inversions
are relatively inexpensive.

Another possible computational burden stems from the
MHT algorithm, which is known to grow exponentially in
complexity as the number of tracks increases. Ackermann
and Schmitz [8] considered a modified version of Markov
Chain Monte Carlo (MCMC) data association [50] to account
for this growth. The computational complexity of MHT can
also be controlled by limiting the pruning depth, achieving a
tradeoff between accurate data association and computational
complexity. In general, any automatic association algorithm
may be used in the uppermost block in Fig. 3 instead of
MHT, such as the joint probabilistic data association (JPDA)
[51] or the MCMC algorithm of [8].
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To conclude, in this work, we presented a new algorithm
to improve sparsity-based superresolution CEUS imaging,
taken mainly from low-frame rate clinical scanners. By for-
mulating a weighted sparse recovery minimization problem,
combined with online tracking of individual MBs, we are
able to improve the sparse recovery process and fill-in for
additional information of MB positions. 3SAT achieves a
smoother depiction of the vasculature and provides quantitative
information regarding MB kinematics and MB detection rates.
We applied our algorithm to both simulations and in vivo
human prostate scans, obtained from low-frame rate (10 Hz),
clinically approved US machines, demonstrating superresolu-
tion recovery of the vascular bed with 100 frames. On these
scans, we demonstrate that as MB density increases, 3SAT
is able to recover more MBs compared with the state-of-the-
art methods, while achieving superresolution imaging. Since
3SAT employs an online estimation process, it may be suitable
for real-time applications within commercially available US
machines.
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