37 research outputs found

    Differences in signal activation by LH and hCG are mediated by the LH/CG receptor’s extracellular hinge region

    Get PDF
    The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) – secreted by the placenta, and lutropin (LH) – produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor’s leucine-rich- repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge region of the receptor

    The Non-Affected Muscle Volume Compensates for the Partial Loss of Strength after Injection of Botulinum Toxin A

    Get PDF
    Local botulinum toxin (BTX-A, Botox®) injection in overactive muscles is a standard treatment in patients with cerebral palsy. The effect is markedly reduced in children above the age of 6 to 7. One possible reason for this is the muscle volume affected by the drug. Nine patients (aged 11.5; 8.7–14.5 years) with cerebral palsy GMFCS I were treated with BTX-A for equinus gait at the gastrocnemii and soleus muscles. BTX-A was administered at one or two injection sites per muscle belly and with a maximum of 50 U per injection site. Physical examination, instrumented gait analysis, and musculoskeletal modelling were used to assess standard muscle parameters, kinematics, and kinetics during gait. Magnetic resonance imaging (MRI) was used to detect the affected muscle volume. All the measurements were carried out pre-, 6 weeks post-, and 12 weeks post-BTX-A. Between 9 and 15% of the muscle volume was affected by BTX-A. There was no effect on gait kinematics and kinetics after BTX-A injection, indicating that the overall kinetic demand placed on the plantar flexor muscles remained unchanged. BTX-A is an effective drug for inducing muscle weakness. However, in our patient cohort, the volume of the affected muscle section was limited, and the remaining non-affected parts were able to compensate for the weakened part of the muscle by taking over the kinetic demands associated with gait, thus not enabling a net functional effect in older children. We recommend distributing the drug over the whole muscle belly through multiple injection sites

    An Endoribonuclease Functionally Linked to Perinuclear mRNP Quality Control Associates with the Nuclear Pore Complexes

    Get PDF
    Nuclear mRNA export is a crucial step in eukaryotic gene expression, which is in yeast coupled to cotranscriptional messenger ribonucleoprotein particle (mRNP) assembly and surveillance. Several surveillance systems that monitor nuclear mRNP biogenesis and export have been described, but the mechanism by which the improper mRNPs are recognized and eliminated remains poorly understood. Here we report that the conserved PIN domain protein Swt1 is an RNA endonuclease that participates in quality control of nuclear mRNPs and can associate with the nuclear pore complex (NPC). Swt1 showed endoribonuclease activity in vitro that was inhibited by a point mutation in the predicted catalytic site. Swt1 lacked clear sequence specificity but showed a strong preference for single-stranded regions. Genetic interactions were found between Swt1 and the THO/TREX and TREX-2 complexes, and with components of the perinuclear mRNP surveillance system, Mlp1, Nup60, and Esc1. Inhibition of the nuclease activity of Swt1 increased the levels and cytoplasmic leakage of unspliced aberrant pre-mRNA, and induced robust nuclear poly(A)+ RNA accumulation in mlp1Δ and esc1Δ strains. Overexpression of Swt1 also caused strong nuclear poly(A)+ RNA accumulation. Swt1 is normally distributed throughout the nucleus and cytoplasm but becomes concentrated at nuclear pore complexes (NPCs) in the nup133Δ mutant, which causes NPC clustering and defects in mRNP export. The data suggest that Swt1 endoribonuclease might be transiently recruited to NPCs to initiate the degradation of defective pre-mRNPs or mRNPs trapped at nuclear periphery in order to avoid their cytoplasmic export and translation

    Biological Earth observation with animal sensors

    Get PDF
    Space-based tracking technology using low-cost miniature tags is now delivering data on fine-scale animal movement at near-global scale. Linked with remotely sensed environmental data, this offers a biological lens on habitat integrity and connectivity for conservation and human health; a global network of animal sentinels of environmen-tal change

    Zur Behandlung prämaturer Fohlen

    Full text link

    The Pseudo Signal Peptide of the Corticotropin-releasing Factor Receptor Type 2A Prevents Receptor Oligomerization

    No full text
    N-terminal signal peptides mediate the interaction of native proteins with the translocon complex of the endoplasmic reticulum membrane and are cleaved off during early protein biogenesis. The corticotropin-releasing factor receptor type 2a (CRF2(a)R) possesses an N-terminal pseudo signal peptide, which represents a so far unique domain within the large protein family of G protein-coupled receptors (GPCRs). In contrast to a conventional signal peptide, the pseudo signal peptide remains uncleaved and consequently forms a hydrophobic extension at the N terminus of the receptor. The functional consequence of the presence of the pseudo signal peptide is not understood. Here, we have analyzed the significance of this domain for receptor dimerization/oligomerization in detail. To this end, we took the CRF2(a)R and the homologous corticotropin-releasing factor receptor type 1 (CRF1R) possessing a conventional cleaved signal peptide and conducted signal peptide exchange experiments. Using single cell and single molecule imaging methods (fluorescence resonance energy transfer and fluorescence cross-correlation spectroscopy, respectively) as well as biochemical experiments, we obtained two novel findings; we could show that (i) the CRF2(a)R is expressed exclusively as a monomer, and (ii) the presence of the pseudo signal peptide prevents its oligomerization. Thus, we have identified a novel functional domain within the GPCR protein family, which plays a role in receptor oligomerization and which may be useful to study the functional significance of this process in general

    From Molecular Details of the Interplay between Transmembrane Helices of the Thyrotropin Receptor to General Aspects of Signal Transduction in Family A G-protein-coupled Receptors (GPCRs)

    No full text
    Transmembrane helices (TMHs) 5 and 6 are known to be important for signal transduction by G-protein-coupled receptors (GPCRs). Our aim was to characterize the interface between TMH5 and TMH6 of the thyrotropin receptor (TSHR) to gain molecular insights into aspects of signal transduction and regulation. A proline at TMH5 position 5.50 is highly conserved in family A GPCRs and causes a twist in the helix structure. Mutation of the TSHR-specific alanine (Ala-5935.50) at this position to proline resulted in a 20-fold reduction of cell surface expression. This indicates that TMH5 in the TSHR might have a conformation different from most other family A GPCRs by forming a regular α-helix. Furthermore, linking our own and previous data from directed mutagenesis with structural information led to suggestions of distinct pairs of interacting residues between TMH5 and TMH6 that are responsible for stabilizing either the basal or the active state. Our insights suggest that the inactive state conformation is constrained by a core set of polar interactions among TMHs 2, 3, 6, and 7 and in contrast that the active state conformation is stabilized mainly by non-polar interactions between TMHs 5 and 6. Our findings might be relevant for all family A GPCRs as supported by a statistical analysis of residue properties between the TMHs of a vast number of GPCR sequences
    corecore