149 research outputs found

    Copper trafficking in eukaryotic systems: current knowledge from experimental and computational efforts

    Get PDF
    Copper plays a vital role in fundamental cellular functions, and its concentration in the cell must be tightly regulated, as dysfunction of copper homeostasis is linked to severe neurological diseases and cancer. This review provides a compendium of current knowledge regarding the mechanism of copper transfer from the blood system to the Golgi apparatus; this mechanism involves the copper transporter hCtr1, the metallochaperone Atox1, and the ATPases ATP7A/B. We discuss key insights regarding the structural and functional properties of the hCtr1-Atox1-ATP7B cycle, obtained from diverse studies relying on distinct yet complementary biophysical, biochemical, and computational methods. We further address the mechanistic aspects of the cycle that continue to remain elusive. These knowledge gaps must be filled in order to be able to harness our understanding of copper transfer to develop therapeutic approaches with the capacity to modulate copper metabolism

    Unraveling the impact of cysteine-to-serine mutations on the structural and functional properties of Cu(I)-binding proteins

    Get PDF
    Appropriate maintenance of Cu(I) homeostasis is an essential requirement for proper cell function because its misregulation induces the onset of major human diseases and mortality. For this reason, several research efforts have been devoted to dissecting the inner working mechanism of Cu(I)-binding proteins and transporters. A commonly adopted strategy relies on mutations of cysteine residues, for which Cu(I) has an exquisite complementarity, to serines. Nevertheless, in spite of the similarity between these two amino acids, the structural and functional impact of serine mutations on Cu(I)-binding biomolecules remains unclear. Here, we applied various biochemical and biophysical methods, together with all-atom simulations, to investigate the effect of these mutations on the stability, structure, and aggregation propensity of Cu(I)-binding proteins, as well as their interaction with specific partner proteins. Among Cu(I)-binding biomolecules, we focused on the eukaryotic Atox1-ATP7B system, and the prokaryotic CueR metalloregulator. Our results reveal that proteins containing cysteine-to-serine mutations can still bind Cu(I) ions; however, this alters their stability and aggregation propensity. These results contribute to deciphering the critical biological principles underlying the regulatory mechanism of the in-cell Cu(I) concentration, and provide a basis for interpreting future studies that will take advantage of cysteine-to-serine mutations in Cu(I)-binding systems

    Cu(I) Controls Conformational States in Human Atox1 Metallochaperone: An EPR and Multiscale Simulation Study

    Get PDF
    Atox1 is a human copper metallochaperone that is responsible for transferring copper ions from the main human copper transporter, hCtr1, to ATP7A/B in the Golgi apparatus. Atox1 interacts with the Ctr1 C-terminal domain as a dimer, although it transfers the copper ions to ATP7A/B in a monomeric form. The copper binding site in the Atox1 dimer involves Cys12 and Cys15, while Lys60 was also suggested to play a role in the copper binding. We recently showed that Atox1 can adopt various conformational states, depending on the interacting protein. In the current study, we apply EPR experiments together with hybrid quantum mechanics-molecular mechanics molecular dynamics simulations using a recently developed semiempirical density functional theory approach, to better understand the effect of Atox1's conformational states on copper coordination. We propose that the flexibility of Atox1 occurs owing to protonation of one or more of the cysteine residues, and that Cys15 is an important residue for Atox1 dimerization, while Cys12 is a critical residue for Cu(I) binding. We also show that Lys60 electrostatically stabilizes the Cu(I)-Atox1 dimer

    An assessment of the quality of randomised controlled trials conducted in China

    Get PDF
    Background: Despite the rapid increase in research in China, little is known about the quality of clinical trials conducted there.Methods: A systematic review and critical appraisal of randomised controlled trials (RCTs) conducted in China and published in 2004 was undertaken to describe their characteristics, assess the quality of their reporting, and where possible, the quality of their conduct. Randomised controlled trials in all disease areas and types of interventions, which took place in China and included Chinese citizens were identified using PubMed and hand searching the Journal Series of the Chinese Medical Association. Quality was assessed against a subset of criteria adapted from the CONSORT statement.Results: Three hundred and seven RCTs were included. One hundred and ninety-nine (64.8%) failed to report methods of randomization and 254 (82.4%) did not mention blinding of either participants or investigators. Reporting of baseline characteristics, primary outcome and length of follow-up was inadequate in a substantial proportion of studies. Fewer than 11% of RCTs mentioned ethical approval and only 18.0% adequately discussed informed consent. However, dropout rates were very favourable with nearly 44% of trials reporting a zero dropout rate.Conclusion: Reporting of RCTs in China requires substantial improvement to meet the targets of the CONSORT statement. The conduct of Chinese RCTs cannot be directly inferred from the standard of reporting; however without good reporting the methods of the trials cannot be clearly ascertained

    The pivotal role of MBD4-ATP7B in the human Cu(i) excretion path as revealed by EPR experiments and all-atom simulations

    Get PDF
    Copper's essentiality and toxicity require a meticulous mechanism for its acquisition, cellular distribution and excretion, which remains hitherto elusive. Herein, we jointly employed electron paramagnetic resonance spectroscopy and all-atom simulations to resolve the copper trafficking mechanism in humans considering the route travelled by Cu(i) from the metallochaperone Atox1 to the metal binding domains 3 and 4 of ATP7B. Our study shows that Cu(i) in the final part of its extraction pathway is most likely mediated by binding of Atox1 monomer to MBD4 of ATP7B. This interaction takes place through weak metal-stabilized protein-protein interactions

    Molecular dynamics simulation of the early stages of the synthesis of periodic mesoporous silica

    Get PDF
    We present results of detailed atomistic modeling of the early stages of the synthesis of periodic mesoporous silica using molecular dynamics. Our simulations lead to the proposal of a mechanism that validates several previous experimental and modeling studies and answers many controversial issues regarding the synthesis of mesoporous silicas. In particular, we show that anionic silicates interact very strongly with cationic surfactants and, significantly adsorb on the surface of micelles, displacing a fraction of previously bound bromide counterions. This induces an increase in micelle size and also enhances silica condensation at the micelle surface. The presence of larger silica aggregates in solution further promotes the growth of micelles and, by binding to surfactant molecules in different micelles, their aggregation. This work demonstrates the crucial role played by silica in influencing, by way of a cooperative templating mechanism, the structure of the eventual liquid-crystal phase, which in turn determines the structure of the porous material

    The Advantages of EPR Spectroscopy in Exploring Diamagnetic Metal Ion Binding and Transfer Mechanisms in Biological Systems

    No full text
    Electron paramagnetic resonance (EPR) spectroscopy has emerged as an ideal biophysical tool to study complex biological processes. EPR spectroscopy can follow minor conformational changes in various proteins as a function of ligand or protein binding or interactions with high resolution and sensitivity. Resolving cellular mechanisms, involving small ligand binding or metal ion transfer, is not trivial and cannot be studied using conventional biophysical tools. In recent years, our group has been using EPR spectroscopy to study the mechanism underlying copper ion transfer in eukaryotic and prokaryotic systems. This mini-review focuses on our achievements following copper metal coordination in the diamagnetic oxidation state, Cu(I), between biomolecules. We discuss the conformational changes induced in proteins upon Cu(I) binding, as well as the conformational changes induced in two proteins involved in Cu(I) transfer. We also consider how EPR spectroscopy, together with other biophysical and computational tools, can identify the Cu(I)-binding sites. This work describes the advantages of EPR spectroscopy for studying biological processes that involve small ligand binding and transfer between intracellular proteins
    corecore