1,269 research outputs found

    Wingtip mounted, counter-rotating proprotor for tiltwing aircraft

    Get PDF
    A tiltwing aircraft, capable of in-flight conversion between a hover and forward cruise mode, employs a counter-rotating proprotor arrangement which permits a significantly increased cruise efficiency without sacrificing either the size of the conversion envelope or the wing efficiency. A benefit in hover is also provided because of the lower effective disk loading for the counter-rotating proprotor, as opposed to a single rotation proprotor of the same diameter. At least one proprotor is provided on each wing section, preferably mounted on the wingtip, with each proprotor having two counter-rotating blade rows. Each blade row has a plurality of blades which are relatively stiff-in-plane and are mounted such that cyclic pitch adjustments may be made for hover control during flight

    Air-ground temperature coupling and subsurface propagation of annual temperature signals

    Get PDF
    Borehole-based reconstructions of ground surface temperature (GST) have been widely used as indicators of paleoclimate. These reconstructions assume that heat transport within the subsurface is conductive. Climatic interpretations of GST reconstructions also assume that GST is strongly coupled to surface air temperature (SAT) on timescales of decades and longer. We examine these two assumptions using records of SAT and subsurface temperature time series from Fargo, North Dakota; Prague, Czech Republic; Cape Henlopen State Park, Delaware; and Cape Hatteras National Seashore, North Carolina. The characteristics of downward propagating annual temperature signals at each site clearly indicate that heat transport can be described as one-dimensional conduction in a homogeneous medium. Extrapolations of subsurface observations to the ground surface yield estimates of annual GST signals and allow comparisons to annual SAT signals. All annual GST signals are modestly attenuated and negligibly phase shifted relative to SAT. The four sites collectively demonstrate that differences between annual GST and SAT signals arise in both summer and winter seasons, in amounts dependent on the climatic setting of each site

    Novel Associations of Nonstructural Loci with Paraoxonase Activity

    Get PDF
    The high-density-lipoprotein-(HDL-) associated esterase paraoxonase 1 (PON1) is a likely contributor to the antioxidant and antiatherosclerotic capabilities of HDL. Two nonsynonymous mutations in the structural gene, PON1, have been associated with variation in activity levels, but substantial interindividual differences remain unexplained and are greatest for substrates other than the eponymous paraoxon. PON1 activity levels were measured for three substrates—organophosphate paraoxon, arylester phenyl acetate, and lactone dihydrocoumarin—in 767 Mexican American individuals from San Antonio, Texas. Genetic influences on activity levels for each substrate were evaluated by association with approximately one million single nucleotide polymorphism (SNPs) while conditioning on PON1 genotypes. Significant associations were detected at five loci including regions on chromosomes 4 and 17 known to be associated with atherosclerosis and lipoprotein regulation and loci on chromosome 3 that regulate ubiquitous transcription factors. These loci explain 7.8% of variation in PON1 activity with lactone as a substrate, 5.6% with the arylester, and 3.0% with paraoxon. In light of the potential importance of PON1 in preventing cardiovascular disease/events, these novel loci merit further investigation

    Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans

    Get PDF
    The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid nematode genomes
    corecore