28 research outputs found
Nitric oxide radicals are emitted by wasp eggs to kill mold fungi
Detrimental microbes caused the evolution of a great diversity of antimicrobial defenses in plants and animals. Insects developing underground seem particularly threatened. Here we show that the eggs of a solitary digger wasp, the European beewolf Philanthus triangulum, emit large amounts of gaseous nitric oxide (NO center dot) to protect themselves and their provisions, paralyzed honeybees, against mold fungi. We provide evidence that a NO-synthase (NOS) is involved in the generation of the extraordinary concentrations of nitrogen radicals in brood cells (similar to 1500 ppm NO center dot and its oxidation product NO2 center dot). Sequencing of the beewolf NOS gene revealed no conspicuous differences to related species. However, due to alternative splicing, the NOS-mRNA in beewolf eggs lacks an exon near the regulatory domain. This preventive external application of high doses of NO center dot by wasp eggs represents an evolutionary key innovation that adds a remarkable novel facet to the array of functions of the important biological effector NO center dot
Oscillatory activity in the medial prefrontal cortex and nucleus accumbens correlates with impulsivity and reward outcome.
Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC) and nucleus accumbens (NAcb) and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD) and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP) oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT), which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50-60 Hz) LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7-9 Hz) LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour.RCUK, Wellcome, OtherThis is the final version of the article. It first appeared at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111300
A Wireless Multi-Channel Recording System for Freely Behaving Mice and Rats
To understand the neural basis of behavior, it is necessary to record brain activity in freely moving animals. Advances in implantable multi-electrode array technology have enabled researchers to record the activity of neuronal ensembles from multiple brain regions. The full potential of this approach is currently limited by reliance on cable tethers, with bundles of wires connecting the implanted electrodes to the data acquisition system while impeding the natural behavior of the animal. To overcome these limitations, here we introduce a multi-channel wireless headstage system designed for small animals such as rats and mice. A variety of single unit and local field potential signals were recorded from the dorsal striatum and substantia nigra in mice and the ventral striatum and prefrontal cortex simultaneously in rats. This wireless system could be interfaced with commercially available data acquisition systems, and the signals obtained were comparable in quality to those acquired using cable tethers. On account of its small size, light weight, and rechargeable battery, this wireless headstage system is suitable for studying the neural basis of natural behavior, eliminating the need for wires, commutators, and other limitations associated with traditional tethered recording systems
In vivo Recording Quality of Mechanically Decoupled Floating Versus Skull-Fixed Silicon-Based Neural Probes
Throughout the past decade, silicon-based neural probes have become a driving force in neural engineering. Such probes comprise sophisticated, integrated CMOS electronics which provide a large number of recording sites along slender probe shanks. Using such neural probes in a chronic setting often requires them to be mechanically anchored with respect to the skull. However, any relative motion between brain and implant causes recording instabilities and tissue responses such as glial scarring, thereby shielding recordable neurons from the recording sites integrated on the probe and thus decreasing the signal quality. In the current work, we present a comparison of results obtained using mechanically fixed and floating silicon neural probes chronically implanted into the cortex of a non-human primate. We demonstrate that the neural signal quality estimated by the quality of the spiking and local field potential (LFP) recordings over time is initially superior for the floating probe compared to the fixed device. Nonetheless, the skull-fixed probe also allowed long-term recording of multi-unit activity (MUA) and low frequency signals over several months, especially once pulsations of the brain were properly controlled
A Face-Aging App for Smoking Cessation in a Waiting Room Setting: Pilot Study in an HIV Outpatient Clinic
Background: There is strong evidence for the effectiveness of addressing tobacco use in health care settings. However, few smokers receive cessation advice when visiting a hospital. Implementing smoking cessation technology in outpatient waiting rooms could be an effective strategy for change, with the potential to expose almost all patients visiting a health care provider without preluding physician action needed. Objective: The objective of this study was to develop an intervention for smoking cessation that would make use of the time patients spend in a waiting room by passively exposing them to a face-aging, public morphing, tablet-based app, to pilot the intervention in a waiting room of an HIV outpatient clinic, and to measure the perceptions of this intervention among smoking and nonsmoking HIV patients. Methods: We developed a kiosk version of our 3-dimensional face-aging app Smokerface, which shows the user how their face would look with or without cigarette smoking 1 to 15 years in the future. We placed a tablet with the app running on a table in the middle of the waiting room of our HIV outpatient clinic, connected to a large monitor attached to the opposite wall. A researcher noted all the patients who were using the waiting room. If a patient did not initiate app use within 30 seconds of waiting time, the researcher encouraged him or her to do so. Those using the app were asked to complete a questionnaire. Results: During a 19-day period, 464 patients visited the waiting room, of whom 187 (40.3%) tried the app and 179 (38.6%) completed the questionnaire. Of those who completed the questionnaire, 139 of 176 (79.0%) were men and 84 of 179 (46.9%) were smokers. Of the smokers, 55 of 81 (68%) said the intervention motivated them to quit (men: 45, 68%;women: 10, 67%);41 (51%) said that it motivated them to discuss quitting with their doctor (men: 32, 49%;women: 9, 60%);and 72 (91%) perceived the intervention as fun (men: 57, 90%;women: 15, 94%). Of the nonsmokers, 92 (98%) said that it motivated them never to take up smoking (men: 72, 99%;women: 20, 95%). Among all patients, 102 (22.0%) watched another patient try the app without trying it themselves;thus, a total of 289 (62.3%) of the 464 patients were exposed to the intervention (average waiting time 21 minutes). Conclusions: A face-aging app implemented in a waiting room provides a novel opportunity to motivate patients visiting a health care provider to quit smoking, to address quitting at their subsequent appointment and thereby encourage physician-delivered smoking cessation, or not to take up smoking
Towards the clinical translation of optogenetic skeletal muscle stimulation
Paralysis is a frequent phenomenon in many diseases, and to date, only functional electrical stimulation (FES) mediated via the innervating nerve can be employed to restore skeletal muscle function in patients. Despite recent progress, FES has several technical limitations and significant side effects. Optogenetic stimulation has been proposed as an alternative, as it may circumvent some of the disadvantages of FES enabling cell type-specific, spatially and temporally precise stimulation of cells expressing light-gated ion channels, commonly Channelrhodopsin2. Two distinct approaches for the restoration of skeletal muscle function with optogenetics have been demonstrated: indirect optogenetic stimulation through the innervating nerve similar to FES and direct optogenetic stimulation of the skeletal muscle. Although both approaches show great promise, both have their limitations and there are several general hurdles that need to be overcome for their translation into clinics. These include successful gene transfer, sustained optogenetic protein expression, and the creation of optically active implantable devices. Herein, a comprehensive summary of the underlying mechanisms of electrical and optogenetic approaches is provided. With this knowledge in mind, we substantiate a detailed discussion of the advantages and limitations of each method. Furthermore, the obstacles in the way of clinical translation of optogenetic stimulation are discussed, and suggestions on how they could be overcome are provided. Finally, four specific examples of pathologies demanding novel therapeutic measures are discussed with a focus on the likelihood of direct versus indirect optogenetic stimulation
Application of floating silicon-based linear multielectrode arrays for acute recording of single neuron activity in awake behaving monkeys
One of the fundamental challenges in behavioral neurophysiology in awake animals is the steady recording of action potentials of many single neurons for as long as possible. Here, we present single neuron data obtained during acute recordings mainly from premotor cortices of three macaque monkeys using a silicon-based linear multielectrode array. The most important aspect of these probes, compared with similar models commercially available, is that, once inserted into the brain using a dedicated insertion device providing an intermediate probe fixation by means of vacuum, they can be released and left floating in the brain. On the basis of our data, these features appear to provide (i) optimal physiological conditions for extracellular recordings, (ii) good or even excellent signal-to-noise ratio depending on the recorded brain area and cortical layer, and (iii) extreme stability of the signal over relatively long periods. The quality of the recorded signal did not change significantly after several penetrations into the same restricted cortical sector, suggesting limited tissue damage due to probe insertion. These results indicate that these probes offer several advantages for acute neurophysiological experiments in awake monkeys, and suggest the possibility to employ them for semichronic or even chronic studies
ÎŒLEDâbased optical cochlear implants for spectrally selective activation of the auditory nerve
Abstract Electrical cochlear implants (eCIs) partially restore hearing and enable speech comprehension to more than half a million users, thereby reâconnecting deaf patients to the auditory scene surrounding them. Yet, eCIs suffer from limited spectral selectivity, resulting from current spread around each electrode contact and causing poor speech recognition in the presence of background noise. Optogenetic stimulation of the auditory nerve might overcome this limitation as light can be conveniently confined in space. Here, we combined virusâmediated optogenetic manipulation of cochlear spiral ganglion neurons (SGNs) and microsystems engineering to establish acute multiâchannel optical cochlear implant (oCI) stimulation in adult Mongolian gerbils. oCIs based on 16 microscale thinâfilm lightâemitting diodes (ÎŒLEDs) evoked tonotopic activation of the auditory pathway with high spectral selectivity and modest power requirements in hearing and deaf gerbils. These results prove the feasibility of ÎŒLEDâbased oCIs for spectrally selective activation of the auditory nerve
ÎŒLEDâbased optical cochlear implants for spectrally selective activation of the auditory nerve
Abstract Electrical cochlear implants (eCIs) partially restore hearing and enable speech comprehension to more than half a million users, thereby reâconnecting deaf patients to the auditory scene surrounding them. Yet, eCIs suffer from limited spectral selectivity, resulting from current spread around each electrode contact and causing poor speech recognition in the presence of background noise. Optogenetic stimulation of the auditory nerve might overcome this limitation as light can be conveniently confined in space. Here, we combined virusâmediated optogenetic manipulation of cochlear spiral ganglion neurons (SGNs) and microsystems engineering to establish acute multiâchannel optical cochlear implant (oCI) stimulation in adult Mongolian gerbils. oCIs based on 16 microscale thinâfilm lightâemitting diodes (ÎŒLEDs) evoked tonotopic activation of the auditory pathway with high spectral selectivity and modest power requirements in hearing and deaf gerbils. These results prove the feasibility of ÎŒLEDâbased oCIs for spectrally selective activation of the auditory nerve