39 research outputs found

    'Calving laws', 'sliding laws' and the stability of tidewater glaciers

    Get PDF
    A new calving criterion is introduced, which predicts calving where the depth of surface crevasses equals ice height above sea level. Crevasse depth is calculated from strain rates, and terminus position and calving rate are therefore functions of ice velocity, strain rate, ice thickness and water depth. We couple the calving criterion with three 'sliding laws', in which velocity is controlled by (1) basal drag, (2) lateral drag and (3) a combination of the two. In model 1, velocities and strain rates are dependent on effective pressure, and hence ice thickness relative to water depth. Imposed thinning can lead to acceleration and terminus retreat, and ice shelves cannot form. In model 2, ice velocity is independent of changes in ice thickness unless accompanied by changes in surface gradient. Velocities are strongly dependent on channel width, and calving margins tend to stabilize at flow-unit widenings. Model 3 exhibits the combined characteristics of the other two models, and suggests that calving glaciers are sensitive to imposed thickness changes if basal drag provides most resistance to flow, but stable if most resistance is from lateral drag. ice shelves can form if reduction of basal drag occurs over a sufficiently long spatial scale. In combination, the new calving criterion and the basal-lateral drag sliding function (model 3) can be used to simulate much of the observed spectrum of behaviour of calving glaciers, and present new opportunities to model ice-sheet response to climate change.</p

    Towards quantifying the glacial runoff signal in the freshwater input to Tyrolerfjord–Young Sound, NE Greenland

    Get PDF
    Terrestrial freshwater runoff strongly influences physical and biogeochemical processes at the fjord scale and can have global impacts when considered at the Greenland scale. We investigate the performance of the HIRHAM5 regional climate model over the catchments delivering freshwater to Tyrolerfjord and Young Sound by comparing to the unique Greenland Ecological Monitoring database of in situ observations from this region. Based on these findings, we estimate and discuss the fraction of runoff originating from glacierized and non-glacierized land delivered at the daily scale between 1996 and 2008. We find that glaciers contributed on average 50–80% of annual terrestrial runoff when considering different sections of Tyrolerfjord–Young Sound, but snowpack depletion on land and consequently runoff happens about one month earlier in the model than observed in the field. The temporal shift in the model is a likely explanation why summer surface salinity in the inner fjord did not correlate to modelled runoff. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13280-016-0876-4) contains supplementary material, which is available to authorized users

    Toward Effective Collaborations between Regional Climate Modeling and Impacts-Relevant Modeling Studies in Polar Regions

    Get PDF
    What: The aim of this workshop was to discuss the needs and challenges in using high-resolution climate model outputs for impacts-relevant modeling. Development of impacts-relevant climate projections in the polar regions requires effective collaboration between regional climate modelers and impacts-relevant modelers in the design stage of high-resolution climate projections for the polar regions. When: 8 November 2021 Where: Online

    Toward Effective Collaborations between Regional Climate Modeling and Impacts-Relevant Modeling Studies in Polar Regions

    Get PDF
    The aim of this workshop was to discuss the needs and challenges in using high-resolution climate model outputs for impacts-relevant modeling. Development of impacts-relevant climate projections in the polar regions requires effective collabora-tion between regional climate modelers and impacts-relevant modelers in the design stage of high-resolution climate projections for the polar regions

    Algae drive enhanced darkening of bare ice on the Greenland ice sheet

    Get PDF
    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of non-algal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere

    Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change

    Get PDF
    We provide an updated analysis of instrumental Greenland monthly temperature data to 2019, focusing mainly on coastal stations but also analysing ice-sheet records from Swiss Camp and Summit. Significant summer (winter) coastal warming of ~1.7 (4.4) C occurred from 1991-2019, but since 2001 overall temperature trends are generally flat and insignificant due to a cooling pattern over the last 6-7 years. Inland and coastal stations show broadly similar temperature trends for summer. Greenland temperature changes are more strongly correlated with Greenland Blocking than with North Atlantic Oscillation changes. In quantifying the association between Greenland coastal temperatures and Greenland Ice Sheet (GrIS) mass-balance changes, we show a stronger link of temperatures with total mass balance rather than surface mass balance. Based on Greenland coastal temperatures and modelled mass balance for the 1972-2018 period, each 1C of summer warming corresponds to ~ (91) 116 Gt yr-1 of GrIS (surface) mass loss and a 26 Gt yr-1 increase in solid ice discharge. Given an estimated 4.0-6.6C of further Greenland summer warming according to the regional model MAR projections run under CMIP6 future climate projections (SSP5-8.5 scenario), and assuming that ice-dynamical losses and ice sheet topography stay similar to the recent past, linear extrapolation gives a corresponding GrIS global sea-level rise (SLR) contribution of ~10.0-12.6 cm by 2100, compared with the 8-27 cm (mean 15 cm) “likely” model projection range reported by IPCC (2019, SPM.B1.2). However, our estimate represents a lower limit for future GrIS change since fixed dynamical mass losses and amplified melt arising from both melt-albedo and melt-elevation positive feedbacks are not taken into account here

    Characteristics of surface “melt potential” over Antarctic ice shelves based on regional atmospheric model simulations of summer air temperature extremes from 1979/80 to 2018/19

    Get PDF
    We calculate a regional surface “melt potential” index (MPI) over Antarctic ice shelves that describes the frequency (MPI-freq, %) and intensity (MPI-int, K) of daily maximum summer temperatures exceeding a melt threshold of 273.15 K. This is used to determine which ice shelves are vulnerable to melt-induced hydrofracture and is calculated using near-surface temperature output for each summer from 1979/80 to 2018/19 from two high-resolution regional atmospheric model hindcasts (using the MetUM and HIRHAM5). MPI is highest for Antarctic Peninsula ice shelves (MPI-freq 23-35%, MPI-int 1.2-2.1 K), lowest (2-3%, < 0 K) for Ronne-Filchner and Ross ice shelves, and around 10-24% and 0.6-1.7 K for the other West and East Antarctic ice shelves. Hotspots of MPI are apparent over many ice shelves, and they also show a decreasing trend in MPI-freq. The regional circulation patterns associated with high MPI values over West and East Antarctic ice shelves are remarkably consistent for their respective region but tied to different large-scale climate forcings. The West Antarctic circulation resembles the central Pacific El Niño pattern with a stationary Rossby wave and a strong anticyclone over the high-latitude South Pacific. By contrast, the East Antarctic circulation comprises a zonally symmetric negative Southern Annular Mode pattern with a strong regional anticyclone on the plateau and enhanced coastal easterlies/weakened Southern Ocean westerlies. Values of MPI are 3-4 times larger for a lower temperature/melt threshold of 271.15 K used in a sensitivity test, as melting can occur at temperatures lower than 273.15 K depending on snowpack properties
    corecore