18,871 research outputs found

    A unified IMEX Runge-Kutta approach for hyperbolic systems with multiscale relaxation

    Get PDF
    In this paper we consider the development of Implicit-Explicit (IMEX) Runge-Kutta schemes for hyperbolic systems with multiscale relaxation. In such systems the scaling depends on an additional parameter which modifies the nature of the asymptotic behavior which can be either hyperbolic or parabolic. Because of the multiple scalings, standard IMEX Runge-Kutta methods for hyperbolic systems with relaxation loose their efficiency and a different approach should be adopted to guarantee asymptotic preservation in stiff regimes. We show that the proposed approach is capable to capture the correct asymptotic limit of the system independently of the scaling used. Several numerical examples confirm our theoretical analysis

    Cosmological string models from Milne spaces and SL(2,Z) orbifold

    Full text link
    The n+1n+1-dimensional Milne Universe with extra free directions is used to construct simple FRW cosmological string models in four dimensions, describing expansion in the presence of matter with p=kρp=k \rho , k=(4n)/3nk=(4-n)/3n. We then consider the n=2 case and make SL(2,Z) orbifold identifications. The model is surprisingly related to the null orbifold with an extra reflection generator. The study of the string spectrum involves the theory of harmonic functions in the fundamental domain of SL(2,Z). In particular, from this theory one can deduce a bound for the energy gap and the fact that there are an infinite number of excitations with a finite degeneracy. We discuss the structure of wave functions and give examples of physical winding states becoming light near the singularity.Comment: 14 pages, harvma

    Implicit-Explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit

    Full text link
    We consider Implicit-Explicit (IMEX) Runge-Kutta (R-K) schemes for hyperbolic systems with stiff relaxation in the so-called diffusion limit. In such regime the system relaxes towards a convection-diffusion equation. The first objective of the paper is to show that traditional partitioned IMEX R-K schemes will relax to an explicit scheme for the limit equation with no need of modification of the original system. Of course the explicit scheme obtained in the limit suffers from the classical parabolic stability restriction on the time step. The main goal of the paper is to present an approach, based on IMEX R-K schemes, that in the diffusion limit relaxes to an IMEX R-K scheme for the convection-diffusion equation, in which the diffusion is treated implicitly. This is achieved by an original reformulation of the problem, and subsequent application of IMEX R-K schemes to it. An analysis on such schemes to the reformulated problem shows that the schemes reduce to IMEX R-K schemes for the limit equation, under the same conditions derived for hyperbolic relaxation. Several numerical examples including neutron transport equations confirm the theoretical analysis

    Recent Studies of Nonequilibrium Flows at the Cornell Aeronautical Laboratory

    Get PDF
    Vibrational relaxation in supersonic nozzle diatomic gas flow, nonequilibrium effects in high enthalpy airflow over thick wedge flat plates, and reentry nonequilibrium flow field

    The Virtual Element Method with curved edges

    Full text link
    In this paper we initiate the investigation of Virtual Elements with curved faces. We consider the case of a fixed curved boundary in two dimensions, as it happens in the approximation of problems posed on a curved domain or with a curved interface. While an approximation of the domain with polygons leads, for degree of accuracy k2k \geq 2, to a sub-optimal rate of convergence, we show (both theoretically and numerically) that the proposed curved VEM lead to an optimal rate of convergence

    Sports brands communication in the "Covid" age: strategies, representations, identity and consumption

    Get PDF
    The paper investigates the role of brand communication during the first period of pandemic age, in which Sport and PA were also called to redesign behaviours, cultural and consumer practices as well as to answer new questions of meaning. The new spirit of the time we are living in, is characterized by the domination of the medical-scientific language, and by a strong contraction of the economy in which trends and fashions appear scaled down and subordinate to new goals of well-being. The pandemic has increased the digitized experiences of sports practices, bringing out more and more aspects of individualism, narcissism, which are combined with a continuous search for well-being, health, beauty, fashion. Sports brands therefore appear as social spaces to observe the changes in sports communication and its consumption practices. The paper analysis how – during the first lockdown – the story-telling of sports brands has changed values, going to new socially responsible commitments in terms of global health and security. Following the multidimensional theory of communication, some emblematic cases of global sports brands are investigated through qualitative methods, in order to highlight the emergence of new issues: representations, identities, rules and consumption as innovative aspects of sports cultural production. The aim is to show sport and PA as a sort of pandemic “domestication” of the social reality we are experiencing

    Model of black hole evolution

    Get PDF
    From the postulate that a black hole can be replaced by a boundary on the apparent horizon with suitable boundary conditions, an unconventional scenario for the evolution emerges. Only an insignificant fraction of energy of order (mG)1(mG)^{-1} is radiated out. The outgoing wave carries a very small part of the quantum mechanical information of the collapsed body, the bulk of the information remaining in the final stable black hole geometry.Comment: 9 pages, harvmac, 3 figures, minor addition
    corecore