25 research outputs found

    Uniformity of V minus Near Infrared Color Evolution of Type Ia Supernovae, and Implications for Host Galaxy Extinction Determination

    Full text link
    From an analysis of SNe 1972E, 1980N, 1981B, 1981D, 1983R, 1998bu, 1999cl, and 1999cp we find that the intrinsic V-K colors of Type Ia SNe with multi-color light curve shape (MLCS) parameter -0.4 < Delta < +0.2 suggest a uniform color curve. V-K colors become bluer linearly with time from roughly one week before B-band maximum until one week after maximum, after which they redden linearly until four weeks after maximum. V-H colors exhibit very similar color evolution. V-J colors exhibit slightly more complex evolution, with greater scatter. The existence of V minus near infrared color relations allows the construction of near infrared light curve templates that are an improvement on those of Elias et al. (1985). We provide optical BVRI and infrared JHK photometry of the Type Ia supernovae 1999aa, 1999cl, and 1999cp. SN 1999aa is an overluminous "slow decliner" (with Delta = -0.47 mag). SN 1999cp is a moderately bright SN unreddened in its host. SN 1999cl is extremely reddened in its host. The V minus near infrared colors of SN 1999cl yield A_V = 2.01 +/- 0.11 mag. This leads to a distance for its host galaxy (M 88) in agreement with other distance measurements for members of the Virgo cluster.Comment: 57 pages, 13 postscript figures, to appear in the August 20, 2000, issue of the Astrophysical Journal. Contains updated references and a number of minor corrections dealt with when page proofs were correcte

    Photometry of the Type Ia Supernovae 1999cc, 1999cl, and 2000cf

    Full text link
    We present previously unpublished BVRI photometry of the Type Ia supernovae 1999cc and 2000cf along with revised photometry of SN 1999cl. We confirm that SN 1999cl is reddened by highly non-standard dust, with R_V = 1.55 +/- 0.08. Excepting two quasar-lensing galaxies whose low values of R_V are controversial, this is the only known object with a published value of R_V less than 2.0. SNe 1999cl and 2000cf have near-infrared absolute magnitudes at maximum in good agreement with other Type Ia SNe of mid-range decline rates.Comment: 28 pages, 5 figures, accepted for publication in the Astronomical Journal, 5 November 200

    Towards Space-like Photometric Precision from the Ground with Beam-Shaping Diffusers

    Get PDF
    We demonstrate a path to hitherto unachievable differential photometric precisions from the ground, both in the optical and near-infrared (NIR), using custom-fabricated beam-shaping diffusers produced using specialized nanofabrication techniques. Such diffusers mold the focal plane image of a star into a broad and stable top-hat shape, minimizing photometric errors due to non-uniform pixel response, atmospheric seeing effects, imperfect guiding, and telescope-induced variable aberrations seen in defocusing. This PSF reshaping significantly increases the achievable dynamic range of our observations, increasing our observing efficiency and thus better averages over scintillation. Diffusers work in both collimated and converging beams. We present diffuser-assisted optical observations demonstrating 62−16+2662^{+26}_{-16}ppm precision in 30 minute bins on a nearby bright star 16-Cygni A (V=5.95) using the ARC 3.5m telescope---within a factor of ∌\sim2 of Kepler's photometric precision on the same star. We also show a transit of WASP-85-Ab (V=11.2) and TRES-3b (V=12.4), where the residuals bin down to 180−41+66180^{+66}_{-41}ppm in 30 minute bins for WASP-85-Ab---a factor of ∌\sim4 of the precision achieved by the K2 mission on this target---and to 101ppm for TRES-3b. In the NIR, where diffusers may provide even more significant improvements over the current state of the art, our preliminary tests have demonstrated 137−36+64137^{+64}_{-36}ppm precision for a KS=10.8K_S =10.8 star on the 200" Hale Telescope. These photometric precisions match or surpass the expected photometric precisions of TESS for the same magnitude range. This technology is inexpensive, scalable, easily adaptable, and can have an important and immediate impact on the observations of transits and secondary eclipses of exoplanets.Comment: Accepted for publication in ApJ. 30 pages, 20 figure

    Sloan Digital Sky Survey Multicolor Observations of GRB010222

    Get PDF
    The discovery of an optical counterpart to GRB010222 (detected by BeppoSAX; Piro 2001) was announced 4.4 hrs after the burst by Henden (2001a). The Sloan Digital Sky Survey's 0.5m photometric telescope (PT) and 2.5m survey telescope were used to observe the afterglow of GRB010222 starting 4.8 hours after the GRB. The 0.5m PT observed the afterglow in five, 300 sec g' band exposures over the course of half an hour, measuring a temporal decay rate in this short period of F_nu \propto t^{-1.0+/-0.5}. The 2.5m camera imaged the counterpart nearly simultaneously in five filters (u' g' r' i' z'), with r' = 18.74+/-0.02 at 12:10 UT. These multicolor observations, corrected for reddening and the afterglow's temporal decay, are well fit by the power-law F_nu \propto nu^{-0.90+/-0.03} with the exception of the u' band UV flux which is 20% below this slope. We examine possible interpretations of this spectral shape, including source extinction in a star forming region.Comment: 8 pages, 4 figures, accepted for publication in ApJ. Two figures added, minor changes to text in this draft. Related material can be found at: http://sdss.fnal.gov:8000/grb

    Kuiper Belt Occultation Predictions

    Get PDF
    Here we present observations of seven large Kuiper Belt objects. From these observations, we extract a point source catalog with ∌0.01″ precision, and astrometry of our target Kuiper Belt objects with 0.04–0.08″ precision within that catalog. We have developed a new technique to predict the future occurrence of stellar occultations by Kuiper Belt objects. The technique makes use of a maximum likelihood approach which determines the best-fit adjustment to cataloged orbital elements of an object. Using simulations of a theoretical object, we discuss the merits and weaknesses of this technique compared to the commonly adopted ephemeris offset approach. We demonstrate that both methods suffer from separate weaknesses, and thus together provide a fair assessment of the true uncertainty in a particular prediction. We present occultation predictions made by both methods for the seven tracked objects, with dates as late as 2015. Finally, we discuss observations of three separate close passages of Quaoar to field stars, which reveal the accuracy of the element adjustment approach, and which also demonstrate the necessity of considering the uncertainty in stellar position when assessing potential occultations

    Optical and Near-Infrared Observations of the Peculiar Type Ia Supernova 1999ac

    Full text link
    We present 39 nights of optical photometry, 34 nights of infrared photometry, and 4 nights of optical spectroscopy of the Type Ia SN 1999ac. This supernova was discovered two weeks before maximum light, and observations were begun shortly thereafter. At early times its spectra resembled the unusual SN 1999aa and were characterized by very high velocities in the Ca II H and K lines, but very low velocities in the Si II 6355 A line. The optical photometry showed a slow rise to peak brightness but, quite peculiarly, was followed by a more rapid decline from maximum. Thus, the B- and V-band light curves cannot be characterized by a single stretch factor. We argue that the best measure of the nature of this object is not the decline rate parameter Delta m_15 (B). The B-V colors were unusual from 30 to 90 days after maximum light in that they evolved to bluer values at a much slower rate than normal Type Ia supernovae. The spectra and bolometric light curve indicate that this event was similar to the spectroscopically peculiar slow decliner SN 1999aa.Comment: 42 pages, 14 figures, accepted for publication in the Astronomical Journal (January 28, 2006

    First-year Sloan Digital Sky Survey-II (SDSS-II) Supernova Results: Hubble Diagram and Cosmological Parameters

    Get PDF
    We present measurements of the Hubble diagram for 103 Type Ia supernovae (SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall 2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data fill in the redshift "desert" between low- and high-redshift SN Ia surveys. We combine the SDSS-II measurements with new distance estimates for published SN data from the ESSENCE survey, the Supernova Legacy Survey, the Hubble Space Telescope, and a compilation of nearby SN Ia measurements. Combining the SN Hubble diagram with measurements of Baryon Acoustic Oscillations from the SDSS Luminous Red Galaxy sample and with CMB temperature anisotropy measurements from WMAP, we estimate the cosmological parameters w and Omega_M, assuming a spatially flat cosmological model (FwCDM) with constant dark energy equation of state parameter, w. For the FwCDM model and the combined sample of 288 SNe Ia, we find w = -0.76 +- 0.07(stat) +- 0.11(syst), Omega_M = 0.306 +- 0.019(stat) +- 0.023(syst) using MLCS2k2 and w = -0.96 +- 0.06(stat) +- 0.12(syst), Omega_M = 0.265 +- 0.016(stat) +- 0.025(syst) using the SALT-II fitter. We trace the discrepancy between these results to a difference in the rest-frame UV model combined with a different luminosity correction from color variations; these differences mostly affect the distance estimates for the SNLS and HST supernovae. We present detailed discussions of systematic errors for both light-curve methods and find that they both show data-model discrepancies in rest-frame UU-band. For the SALT-II approach, we also see strong evidence for redshift-dependence of the color-luminosity parameter (beta). Restricting the analysis to the 136 SNe Ia in the Nearby+SDSS-II samples, we find much better agreement between the two analysis methods but with larger uncertainties.Comment: Accepted for publication by ApJ
    corecore