824 research outputs found

    Information Ethics Education for a Multicultural World

    Get PDF
    How can we prepare information systems students to face the ethical challenges of a globalized world? This paper describes a three-step approach for addressing these challenges. First, we have designed undergraduate and graduate information ethics courses that expand the range of learning of ethical theories beyond the traditional Western canon to include a wide spectrum of non-Western and feminist theories. Second, we have designed interactive cases for this course that adopt a collaborative learning approach where students work together in small groups by playing different roles that make interdependent decisions. Third, we deliver these cases via an educational simulation, making the approach scalable and transferable to other institutions across the country and around the world. The data for this study includes textual answers from end-of-semester questionnaires completed by 101 undergraduate and graduate students during four information ethics courses that included use of the simulation. Data was analyzed using thematic analysis, focusing on the multicultural and global dimensions of student learning. Five themes emerged from data collected in the four courses: Learning about a Diverse Range of Ethical Theories; Learning about how Ethical Theories are Related to Culture and Values; Relating International and Multicultural Dimensions to Understanding Oneself; Relating International and Multicultural Dimensions to Understanding Others; and Understanding the Role of Ethics and Culture in Information Systems Design and Use. Based on these results, the three-step approach developed in this study can be implemented across the country and around the world to ensure that students are prepared for the ethical challenges of a globalized world

    Mitigation of Crack Damage in Metallic Materials

    Get PDF
    A system designed to mitigate or heal crack damage in metallic materials has been developed where the protected material or component is coated with a low-melting temperature film. After a crack is formed, the material is heated, melting the film which then infiltrates the crack opening through capillary action. Upon solidification, the healing material inhibits further crack damage in two ways. While the crack healing material is intact, it acts like an adhesive that bonds or bridges the crack faces together. After fatigue loading damages, the healing material in the crack mouth inhibits further crack growth by creating artificially-high crack closure levels. Mechanical test data show that this method sucessfully arrests or retards crack growth in laboratory specimens

    The serum proteome of Atlantic salmon, Salmo salar, during pancreas disease (PD) following infection with salmonid alphavirus subtype 3 (SAV3)

    Get PDF
    Salmonid alphavirus is the aetological agent of pancreas disease (PD) in marine Atlantic salmon, Salmo salar, and rainbow trout, Oncorhynchus mykiss, with most outbreaks in Norway caused by SAV subtype 3 (SAV3). This atypical alphavirus is transmitted horizontally causing a significant economic impact on the aquaculture industry. This histopathological and proteomic study, using an established cohabitational experimental model, investigated the correlation between tissue damage during PD and a number of serum proteins associated with these pathologies in Atlantic salmon. The proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting. A number of humoral components of immunity which may act as biomarkers of the disease were also identified. For example, creatine kinase, enolase and malate dehydrogenase serum concentrations were shown to correlate with pathology during PD. In contrast, hemopexin, transferrin, and apolipoprotein, amongst others, altered during later stages of the disease and did not correlate with tissue pathologies. This approach has given new insight into not only PD but also fish disease as a whole, by characterisation of the protein response to infection, through pathological processes to tissue recovery. Biological significance: Salmonid alphavirus causes pancreas disease (PD) in Atlantic salmon, Salmo salar, and has a major economic impact on the aquaculture industry. A proteomic investigation of the change to the serum proteome during PD has been made with an established experimental model of the disease. Serum proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting with 72 protein spots being shown to alter significantly over the 12 week period of the infection. The concentrations of certain proteins in serum such as creatine kinase, enolase and malate dehydrogenase were shown to correlate with tissue pathology while other proteins such as hemopexin, transferrin, and apolipoprotein, altered in concentration during later stages of the disease and did not correlate with tissue pathologies. The protein response to infection may be used to monitor disease progression and enhance understanding of the pathology of PD

    Verbal thinking and inner speech use in autism spectrum disorder

    Get PDF
    The extent to which cognition is verbally mediated in neurotypical individuals is the subject of debate in cognitive neuropsychology, as well as philosophy and psychology. Studying “verbal thinking” in developmental/neuropsychological disorders provides a valuable opportunity to inform theory building, as well as clinical practice. In this paper, we provide a comprehensive, critical review of such studies among individuals with autism spectrum disorder (ASD). ASD involves severe social-communication deficits and limitations in cognitive/behavioural flexibility. The prevailing view in the field is that neither cognition nor behaviour is mediated verbally in ASD, and that this contributes to diagnostic features. However, our review suggests that, on the contrary, most studies to date actually find that among people with ASD cognitive task performance is either a) mediated verbally in a typical fashion, or b) not mediated verbally, but at no obvious cost to overall task performance. Overall though, these studies have methodological limitations and thus clear-cut conclusions are not possible at this stage. The aim of the review is to take stock of existing empirical findings, as well as to help develop the directions for future research that will resolve the many outstanding issues in this field

    Computation of protein geometry and its applications: Packing and function prediction

    Full text link
    This chapter discusses geometric models of biomolecules and geometric constructs, including the union of ball model, the weigthed Voronoi diagram, the weighted Delaunay triangulation, and the alpha shapes. These geometric constructs enable fast and analytical computaton of shapes of biomoleculres (including features such as voids and pockets) and metric properties (such as area and volume). The algorithms of Delaunay triangulation, computation of voids and pockets, as well volume/area computation are also described. In addition, applications in packing analysis of protein structures and protein function prediction are also discussed.Comment: 32 pages, 9 figure

    Three-micron spectra of AGB stars and supergiants in nearby galaxies

    Get PDF
    The dependence of stellar molecular bands on the metallicity is studied using infrared L-band spectra of AGB stars (both carbon-rich and oxygen-rich) and M-type supergiants in the Large and Small Magellanic Clouds (LMC and SMC) and in the Sagittarius Dwarf Spheroidal Galaxy. The spectra cover SiO bands for oxygen-rich stars, and acetylene (C2H2), CH and HCN bands for carbon-rich AGB stars. The equivalent width of acetylene is found to be high even at low metallicity. The high C2H2 abundance can be explained with a high carbon-to-oxygen (C/O) ratio for lower metallicity carbon stars. In contrast, the HCN equivalent width is low: fewer than half of the extra-galactic carbon stars show the 3.5micron HCN band, and only a few LMC stars show high HCN equivalent width. HCN abundances are limited by both nitrogen and carbon elemental abundances. The amount of synthesized nitrogen depends on the initial mass, and stars with high luminosity (i.e. high initial mass) could have a high HCN abundance. CH bands are found in both the extra-galactic and Galactic carbon stars. None of the oxygen-rich LMC stars show SiO bands, except one possible detection in a low quality spectrum. The limits on the equivalent widths of the SiO bands are below the expectation of up to 30angstrom for LMC metallicity. Several possible explanations are discussed. The observations imply that LMC and SMC carbon stars could reach mass-loss rates as high as their Galactic counterparts, because there are more carbon atoms available and more carbonaceous dust can be formed. On the other hand, the lack of SiO suggests less dust and lower mass-loss rates in low-metallicity oxygen-rich stars. The effect on the ISM dust enrichment is discussed.Comment: accepted for A&

    Upper Limits on a Stochastic Background of Gravitational Waves

    Get PDF
    The Laser Interferometer Gravitational-Wave Observatory has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of Ω_0<8.4×10^(-4) in the 69–156 Hz band is ~10^5 times lower than the previous result in this frequency range

    Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data

    Get PDF
    We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10^(-24). These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10^(-5) for the four closest pulsars
    • …
    corecore