28,152 research outputs found
Molecular collisions 21: Semiclassical approximation to atom-symmetric top rotational excitation
A distorted wave approximation to the T matrix for atom-symmetric top scattering was developed. The approximation is correct to first order in the part of the interaction potential responsible for transitions in the component of rotational angular momentum along the symmetry axis of the top. A semiclassical expression for this T matrix is derived by assuming large values of orbital and rotational angular momentum quantum numbers
Reliability of a Shuttle reaction timer
Reaction, movement, and task times refer to the times needed to initially respond to a stimulus, make the specific movement, and complete the entire task. This study evaluated the reliability of a simple reaction timer designed to mimic a Space Shuttle task (turning on an overhead switch)
Novel mid-infrared dispersive wave generation in gas-filled PCF by transient ionization-driven changes in dispersion
Gas-filled hollow-core photonic crystal fibre (PCF) is being used to generate
ever wider supercontinuum spectra, in particular via dispersive wave (DW)
emission in the deep and vacuum ultraviolet, with a multitude of applications.
DWs are the result of the resonant transfer of energy from a self-compressed
soliton, a process which relies crucially on phase matching. It was recently
predicted that, in the strong-field regime, the additional transient anomalous
dispersion introduced by gas ionization would allow phase-matched DW generation
in the mid-infrared (MIR)-something that is forbidden in the absence of free
electrons. Here we report for the first time the experimental observation of
such MIR DWs, embedded in a 4.7-octave-wide supercontinuum that uniquely
reaches simultaneously to the vacuum ultraviolet, with up to 1.7 W of total
average power
Estimation of Costs of Phosphorus Removal In Wastewater Treatment Facilities: Adaptation of Existing Facilities
As part of a wider enquiry into the feasibility of offset banking schemes as a means to implement pollutant trading within Georgia watersheds, this is the second of two reports addressing the issue of estimating costs for upgrades in the performance of phosphorus removal in point-source wastewater treatment facilities. Earlier, preliminary results are presented in Jiang et al (2004) (Working Paper # 2004-010 of the Georgia Water Planning and Policy Center). The present study is much more detailed and employs an advanced software package (WEST®, Hemmis nv, Kortrijk, Belgium) for simulating a variety of treatment plant designs operating under typical Georgia conditions. Specifically, upgrades in performance, in a single step, from a plant working at an effluent limit of less than 2.0 mg/l phosphorus to one working with limits variously ranging between less than 1.0 mg/l to less than 0.05 mg/l phosphorus are simulated and the resulting costs of the upgrade estimated.Five capacities of plant are considered, from 1 MGD to 100 MGD. Three strategic, alternative designs for the facility are considered: the basic activated sludge (AS) process with chemical addition, the Anoxic/Oxic (A/O) arrangement of the AS process, and the Anaerobic/Aerobic/Oxic (A/A/O) arrangement of the AS process. Upgrades in performance are consistent with the logical alternatives for adapting these options. Cost comparisons are made primarily on the basis of the incremental cost of the upgrade, i.e., from the base-case, reference plant to that performing at the higher level, as expressed through the incremental Total Annual Economic Cost (TAEC; in /kg).For the most stringent upgrade, for example, to a plant generating an effluent with less than 0.05 mg/l phosphorus, these marginal costs -- the cost of the additional phosphorus removed as a result of the upgrade -- amount to something of the order of 150-425 $/kg, with the upper bound being associated with the smallest plant configuration (1 MGD). Working Paper Number 2005-001
The appearance of a compact jet in the soft-intermediate state of 4U 1543-47
Recent advancements in the understanding of jet-disc coupling in black hole
candidate X-ray binaries (BHXBs) have provided close links between radio jet
emission and X-ray spectral and variability behaviour. In 'soft' X-ray states
the jets are suppressed, but the current picture lacks an understanding of the
X-ray features associated with the quenching or recovering of these jets. Here
we show that a brief, ~4 day infrared (IR) brightening during a predominantly
soft X-ray state of the BHXB 4U 1543-47 is contemporaneous with a strong X-ray
Type B quasi-periodic oscillation (QPO), a slight spectral hardening and an
increase in the rms variability, indicating an excursion to the
soft-intermediate state (SIMS). This IR 'flare' has a spectral index consistent
with optically thin synchrotron emission and most likely originates from the
steady, compact jet. This core jet emitting in the IR is usually only
associated with the hard state, and its appearance during the SIMS places the
'jet line' between the SIMS and the soft state in the hardness-intensity
diagram for this source. IR emission is produced in a small region of the jets
close to where they are launched (~ 0.1 light-seconds), and the timescale of
the IR flare in 4U 1543-47 is far too long to be caused by a single, discrete
ejection. We also present a summary of the evolution of the jet and X-ray
spectral/variability properties throughout the whole outburst, constraining the
jet contribution to the X-ray flux during the decay.Comment: Accepted to MNRAS. 11 pages, 6 figure
Principles of Entrainment: Diagnostic Utility for Supraventricular Tachycardia
Entrainment is an important pacing maneuver that can be used to identify reentry as a tachycardia mechanism and define components of the circuit. This review examines how principles of entrainment can be used to arrive at a firm supraventricular tachycardia diagnosis using a simple algorithm and builds a foundation for the application of entrainment to more complex or unknown circuits
Different twins in the millisecond pulsar recycling scenario: optical polarimetry of PSR J1023+0038 and XSS J12270-4859
We present the first optical polarimetric study of the two transitional
pulsars PSR J1023+0038 and XSS J12270-4859. This work is focused on the search
for intrinsical linear polarisation (LP) in the optical emission from the two
systems. We carried out multiband optical and NIR photo-polarimetry of the two
systems using the ESO NTT at La Silla (Chile), equipped with the EFOSC2 and the
SOFI instruments. XSS J12270-4859 was observed during its radio-pulsar state;
we did not detect LP in all bands, with 3 sigma upper limits of, e.g., 1.4% in
the R-band. We built the NIR-optical averaged spectral energy distribution
(SED) of the system, that could be well described by an irradiated black body
with radius and albedo ,
without the need of further components (thus excluding the visible presence of
an extended accretion disc and/or of relativistic jets). The case was different
for PSR J1023+0038, that was in its accretion phase during our campaign. We
measured a LP of and in the V and R bands,
respectively. The phase-resolved polarimetric curve of the source in the R-band
reveals a hint of a sinusoidal modulation at the source 4.75 hr orbital period,
peaked at the same orbital phase as the light curve. The measured LP of PSR
J1023+0038 could in principle be interpreted as scattering with free electrons
(that can be found in the accretion disc of the system or even in the hot
corona that surrounds the disc itself) or to synchrotron emission from a
relativistic particles jet or outflow. However, the NIR-optical SED of the
system built starting from our dataset did not suggest the presence of a jet.
We conclude that the optical LP observed for PSR J1023+0038 is possibly due to
Thomson scattering with electrons in the disc, as also suggested from the
possible modulation of the R-band LP at the system orbital period.Comment: 10 pages, 8 figures, 4 tables. Accepted for publication in Sec. 7.
Stellar structure and evolution of Astronomy and Astrophysic
On the Optical -- X-ray correlation from outburst to quiescence in Low Mass X-ray Binaries: the representative cases of V404 Cyg and Cen X-4
Low mass X-ray binaries (LMXBs) show evidence of a global correlation of
debated origin between X-ray and optical luminosity. We study for the first
time this correlation in two transient LMXBs, the black hole V404 Cyg and the
neutron star Cen X-4, over 6 orders of magnitude in X-ray luminosity, from
outburst to quiescence. After subtracting the contribution from the companion
star, the Cen X-4 data can be described by a single power law correlation of
the form , consistent with disk reprocessing. We
find a similar correlation slope for V404 Cyg in quiescence (0.46) and a
steeper one (0.56) in the outburst hard state of 1989. However, V404 Cyg is
about times optically brighter, at a given keV X-ray
luminosity, compared to Cen X-4. This ratio is a factor of 10 smaller in
quiescence, where the normalization of the V404 Cyg correlation also changes.
We show that once the bolometric X-ray emission is considered and the known
main differences between V404 Cyg and Cen X-4 are taken into account (a larger
compact object mass, accretion disk size, and the presence of a strong jet
contribution in the hard state for the black hole system) the two systems lie
on the same correlation. In V404 Cyg, the jet dominates spectrally at
optical-infrared frequencies during the hard state, but makes a negligible
contribution in quiescence, which may account for the change in its correlation
slope and normalization. These results provide a benchmark to compare with data
from the 2015 outburst of V404 Cyg and, potentially, other transient LMXBs as
well.Comment: Accepted on ApJ, 12 pages, 4 figures, 4 table
- …