32 research outputs found

    \u3ci\u3eSeussapex\u3c/i\u3e, a New Genus of Lecanicephalidean Tapeworm (Platyhelminthes: Cestoda) from the Stingray Genus \u3ci\u3eHimantura\u3c/i\u3e (Myliobatiformes: Dasyatidae) in the Indo-West Pacific with Investigation of Mode of Attachment

    Get PDF
    A new lecanicephalidean genus, Seussapex gen. n., is erected for specimens collected from stingrays from the Indo-West Pacific resembling the little known species Tenia [sic] narinari MacCallum, 1917 from the spotted eagle ray, Aetobatus narinari (Euphrasen). Members of this new genus are unique in their possession of a multi-tiered apical structure comprising a bipartite apical modification of the scolex proper, and an externally bipartite apical organ with anterior and posterior glandular compartments internally. The appearance of the scolex varies dramatically depending on state of protrusion and/or evagination of these different parts which appear to be able to function independently. Seussapex karybares sp. n. parasitizing Himantura uarnak 2 (sensu Naylor et al., 2012) in northern Australia is described as the type species and Tenia [sic] narinari is transferred to the new genus. The two species differ in scolex length and width of the posterior dome-shaped portion of the apical organ. Histological sections of scoleces stained using the periodic acid-Schiff (PAS) reaction showed the surface of the anterior part of the apical organ and the anterior glandular compartment to stain PAS positive, suggesting a chemical mode of attachment to the host’s intestinal mucosal surface. Extensive collecting efforts of stingrays in the Indo-West Pacific shows Seussapex gen. n. to be restricted to species of Himantura Müller et Henle and suggests additional diversity in this group of hosts. In addition, the host identity of Seussapex narinari (MacCallum, 1917) comb. n. is called into question

    The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving in and out of symbiosis

    Get PDF
    Background: Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living systems that are virtually independent of photosynthetic primary production. These associations have evolved multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture independent methods. The symbiosis between the coastal bivalve, Solemya velum, and its intracellular symbiont is a model for chemosynthetic symbioses given its accessibility in intertidal environments and the ability to maintain it under laboratory conditions. To better understand this symbiosis, the genome of the S. velum endosymbiont was sequenced. Results: Relative to the genomes of obligate symbiotic bacteria, which commonly undergo erosion and reduction, the S. velum symbiont genome was large (2.7 Mb), GC-rich (51%), and contained a large number (78) of mobile genetic elements. Comparative genomics identified sets of genes specific to the chemosynthetic lifestyle and necessary to sustain the symbiosis. In addition, a number of inferred metabolic pathways and cellular processes, including heterotrophy, branched electron transport, and motility, suggested that besides the ability to function as an endosymbiont, the bacterium may have the capacity to live outside the host. Conclusions: The physiological dexterity indicated by the genome substantially improves our understanding of the genetic and metabolic capabilities of the S. velum symbiont and the breadth of niches the partners may inhabit during their lifecycle. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-924) contains supplementary material, which is available to authorized users

    Positive nematode classification data.

    No full text
    Bacterial symbionts that manipulate the reproduction of their hosts are important factors in invertebrate ecology and evolution, and are being leveraged for host biological control. Infection prevalence restricts which biological control strategies are possible and is thought to be strongly influenced by the density of symbiont infection within hosts, termed titer. Current methods to estimate infection prevalence and symbiont titers are low-throughput, biased towards sampling infected species, and rarely measure titer. Here we develop a data mining approach to estimate symbiont infection frequencies within host species and titers within host tissues. We applied this approach to screen ~32,000 publicly available sequence samples from the most common symbiont host taxa, discovering 2,083 arthropod and 119 nematode infected samples. From these data, we estimated that Wolbachia infects approximately 44% of all arthropod and 34% of all nematode species, while other reproductive manipulators only infect 1–8% of arthropod and nematode species. Although relative titers within hosts were highly variable within and between arthropod species, a combination of arthropod host species and Wolbachia strain explained approximately 36% of variation in Wolbachia titer across the dataset. To explore potential mechanisms for host control of symbiont titer, we leveraged population genomic data from the model system Drosophila melanogaster. In this host, we found a number of SNPs associated with titer in candidate genes potentially relevant to host interactions with Wolbachia. Our study demonstrates that data mining is a powerful tool to detect bacterial infections and quantify infection intensities, thus opening an array of previously inaccessible data for further analysis in host-symbiont evolution.</div

    <i>Wolbachia</i> global infection frequencies and confidence intervals generated for arthropod orders.

    No full text
    All species in the dataset were downsampled to a maximum 100 individuals. Confidence intervals were generated using 1000 bootstrap replicates fitting a beta-binomial model to species infection frequency data among orders. A minimum infection frequency of 0.001 was used to classify a species as positively infected (See Methods).</p

    DGRP infection classification accuracy.

    No full text
    Bacterial symbionts that manipulate the reproduction of their hosts are important factors in invertebrate ecology and evolution, and are being leveraged for host biological control. Infection prevalence restricts which biological control strategies are possible and is thought to be strongly influenced by the density of symbiont infection within hosts, termed titer. Current methods to estimate infection prevalence and symbiont titers are low-throughput, biased towards sampling infected species, and rarely measure titer. Here we develop a data mining approach to estimate symbiont infection frequencies within host species and titers within host tissues. We applied this approach to screen ~32,000 publicly available sequence samples from the most common symbiont host taxa, discovering 2,083 arthropod and 119 nematode infected samples. From these data, we estimated that Wolbachia infects approximately 44% of all arthropod and 34% of all nematode species, while other reproductive manipulators only infect 1–8% of arthropod and nematode species. Although relative titers within hosts were highly variable within and between arthropod species, a combination of arthropod host species and Wolbachia strain explained approximately 36% of variation in Wolbachia titer across the dataset. To explore potential mechanisms for host control of symbiont titer, we leveraged population genomic data from the model system Drosophila melanogaster. In this host, we found a number of SNPs associated with titer in candidate genes potentially relevant to host interactions with Wolbachia. Our study demonstrates that data mining is a powerful tool to detect bacterial infections and quantify infection intensities, thus opening an array of previously inaccessible data for further analysis in host-symbiont evolution.</div

    DGRP infection classification accuracy.

    No full text
    Bacterial symbionts that manipulate the reproduction of their hosts are important factors in invertebrate ecology and evolution, and are being leveraged for host biological control. Infection prevalence restricts which biological control strategies are possible and is thought to be strongly influenced by the density of symbiont infection within hosts, termed titer. Current methods to estimate infection prevalence and symbiont titers are low-throughput, biased towards sampling infected species, and rarely measure titer. Here we develop a data mining approach to estimate symbiont infection frequencies within host species and titers within host tissues. We applied this approach to screen ~32,000 publicly available sequence samples from the most common symbiont host taxa, discovering 2,083 arthropod and 119 nematode infected samples. From these data, we estimated that Wolbachia infects approximately 44% of all arthropod and 34% of all nematode species, while other reproductive manipulators only infect 1–8% of arthropod and nematode species. Although relative titers within hosts were highly variable within and between arthropod species, a combination of arthropod host species and Wolbachia strain explained approximately 36% of variation in Wolbachia titer across the dataset. To explore potential mechanisms for host control of symbiont titer, we leveraged population genomic data from the model system Drosophila melanogaster. In this host, we found a number of SNPs associated with titer in candidate genes potentially relevant to host interactions with Wolbachia. Our study demonstrates that data mining is a powerful tool to detect bacterial infections and quantify infection intensities, thus opening an array of previously inaccessible data for further analysis in host-symbiont evolution.</div

    Wolbachia endosymbionts manipulate the self-renewal and differentiation of germline stem cells to reinforce fertility of their fruit fly host.

    No full text
    The alphaproteobacterium Wolbachia pipientis infects arthropod and nematode species worldwide, making it a key target for host biological control. Wolbachia-driven host reproductive manipulations, such as cytoplasmic incompatibility (CI), are credited for catapulting these intracellular bacteria to high frequencies in host populations. Positive, perhaps mutualistic, reproductive manipulations also increase infection frequencies, but are not well understood. Here, we identify molecular and cellular mechanisms by which Wolbachia influences the molecularly distinct processes of germline stem cell (GSC) self-renewal and differentiation. We demonstrate that wMel infection rescues the fertility of flies lacking the translational regulator mei-P26 and is sufficient to sustain infertile homozygous mei-P26-knockdown stocks indefinitely. Cytology revealed that wMel mitigates the impact of mei-P26 loss through restoring proper pMad, Bam, Sxl, and Orb expression. In Oregon R files with wild-type fertility, wMel infection elevates lifetime egg hatch rates. Exploring these phenotypes through dual-RNAseq quantification of eukaryotic and bacterial transcripts revealed that wMel infection rescues and offsets many gene expression changes induced by mei-P26 loss at the mRNA level. Overall, we show that wMel infection beneficially reinforces host fertility at mRNA, protein, and phenotypic levels, and these mechanisms may promote the emergence of mutualism and the breakdown of host reproductive manipulations

    Classification of divergent <i>Wolbachia</i> strains.

    No full text
    Bacterial symbionts that manipulate the reproduction of their hosts are important factors in invertebrate ecology and evolution, and are being leveraged for host biological control. Infection prevalence restricts which biological control strategies are possible and is thought to be strongly influenced by the density of symbiont infection within hosts, termed titer. Current methods to estimate infection prevalence and symbiont titers are low-throughput, biased towards sampling infected species, and rarely measure titer. Here we develop a data mining approach to estimate symbiont infection frequencies within host species and titers within host tissues. We applied this approach to screen ~32,000 publicly available sequence samples from the most common symbiont host taxa, discovering 2,083 arthropod and 119 nematode infected samples. From these data, we estimated that Wolbachia infects approximately 44% of all arthropod and 34% of all nematode species, while other reproductive manipulators only infect 1–8% of arthropod and nematode species. Although relative titers within hosts were highly variable within and between arthropod species, a combination of arthropod host species and Wolbachia strain explained approximately 36% of variation in Wolbachia titer across the dataset. To explore potential mechanisms for host control of symbiont titer, we leveraged population genomic data from the model system Drosophila melanogaster. In this host, we found a number of SNPs associated with titer in candidate genes potentially relevant to host interactions with Wolbachia. Our study demonstrates that data mining is a powerful tool to detect bacterial infections and quantify infection intensities, thus opening an array of previously inaccessible data for further analysis in host-symbiont evolution.</div
    corecore