50 research outputs found

    SECTM1 Produced by Tumor Cells Attracts Human Monocytes via CD7-Mediated Activation of the PI3K Pathway

    Get PDF
    Tumor-associated macrophages (TAMs) have essential roles in tumor progression and metastasis. Tumor cells recruit myeloid progenitors and monocytes to the tumor site, where they differentiate into TAMs; however, this process is not well studied in humans. Here we show that human CD7, a T-cell and NK cell receptor, is highly expressed by monocytes and macrophages. Expression of CD7 decreases in M-CSF-differentiated macrophages and in melanoma-conditioned medium–induced macrophages (MCMI/Mφ) in comparison to monocytes. A ligand for CD7, SECTM1 (secreted and transmembrane protein 1), is highly expressed in many tumors, including melanoma cells. We show that SECTM1 binds to CD7 and significantly increases monocyte migration by activation of the PI3K (phosphatidylinositol 3′-kinase) pathway. In human melanoma tissues, tumor-infiltrating macrophages expressing CD7 are present. These melanomas, with CD7-positive inflammatory cell infiltrations, frequently highly express SECTM1, including an N-terminal, soluble form, which can be detected in the sera of metastatic melanoma patients but not in normal sera. Taken together, our data demonstrate that CD7 is present on monocytes and tumor macrophages and that its ligand, SECTM1, is frequently expressed in corresponding melanoma tissues, possibly acting as a chemoattractant for monocytes to modulate the melanoma microenvironment

    Symposium in Honor of Hilary Koprowski's Scientific Achievements

    No full text

    SCCRO (DCUN1D1) Is an Essential Component of the E3 Complex for Neddylation*S⃞

    No full text
    Covalent modification of cullins by the ubiquitin-like protein NEDD8 (neddylation) regulates protein ubiquitination by promoting the assembly of cullin-RING ligase E3 complexes. Like ubiquitination, neddylation results from an enzymatic cascade involving the sequential activity of a dedicated E1 (APPBP1/Uba3), E2 (Ubc12), and an ill-defined E3. We show that SCCRO (also known as DCUN1D1) binds to the components of the neddylation pathway (Cullin-ROC1, Ubc12, and CAND1) and augments but is not required for cullin neddylation in reactions using purified recombinant proteins. We also show that SCCRO recruits Ubc12∼NEDD8 to the CAND1-Cul1-ROC1 complex but that this is not sufficient to dissociate or overcome the inhibitory effects of CAND1 on cullin neddylation in purified protein assays. In contrast to findings in cellular systems where no binding is seen, we show that SCCRO and CAND1 can bind to the neddylated Cul1-ROC1 complex in assays using purified recombinant proteins. Although neddylated (not unneddylated) Cul1-ROC1 is released from CAND1 upon incubation with testis lysate from SCCRO+/+ mice, the addition of recombinant SCCRO is required to achieve the same results in lysate from SCCRO–/– mice. Combined, these results suggest that SCCRO is an important component of the neddylation E3 complex that functions to recruit charged E2 and is involved in the release of inhibitory effects of CAND1 on cullin-RING ligase E3 complex assembly and activity

    Global climate evolution during the last deglaciation

    No full text
    Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth's climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to the carbon cycle resulted in a net release of the greenhouse gases CO2 and CH4 to the atmosphere; and changes in atmosphere and ocean circulation affected the global distribution and fluxes of water and heat. Here we summarize a major effort by the paleoclimate research community to characterize these changes through the development of welldated, high-resolution records of the deep and intermediate ocean as well as surface climate. Our synthesis indicates that the super-position of two modes explain

    A novel mechanism by which silica defends grasses against herbivory

    No full text
    BACKGROUND AND AIMS: Previous studies have shown that silica in grass leaves defends them against small herbivores, which avoid high-silica grasses and digest them less efficiently. This study tested the idea that silica can reduce digestibility by preventing the mechanical breakdown of chlorenchyma cells. METHODS: Both the percentage of total chlorophyll liberated from high- and low-silica grass leaves by mechanical grinding and the chlorophyll content of locust faeces were measured. KEY RESULTS: High-silica grasses released less chlorophyll after grinding and retained more after passing through the gut of locusts, showing that silica levels correlated with increased mechanical protection. CONCLUSIONS: These results suggest that silica may defend grasses at least in part by reducing mechanical breakdown of the leaf, and that mechanical protection of resources in chlorenchyma cells is a novel and potentially important mechanism by which silica protects grasses
    corecore