29 research outputs found

    Nuclear Respiratory Factor 1 (NRF-1) Controls the Activity Dependent Transcription of the GABA-A Receptor Beta 1 Subunit Gene in Neurons

    Get PDF
    While the exact role of β1 subunit-containing GABA-A receptors (GABARs) in brain function is not well understood, altered expression of the β1 subunit gene (GABRB1) is associated with neurological and neuropsychiatric disorders. In particular, down-regulation of β1 subunit levels is observed in brains of patients with epilepsy, autism, bipolar disorder and schizophrenia. A pathophysiological feature of these disease states is imbalance in energy metabolism and mitochondrial dysfunction. The transcription factor, nuclear respiratory factor 1 (NRF-1), has been shown to be a key mediator of genes involved in oxidative phosphorylation and mitochondrial biogenesis. Using a variety of molecular approaches (including mobility shift, promoter/reporter assays, and overexpression of dominant negative NRF-1), we now report that NRF-1 regulates transcription of GABRB1 and that its core promoter contains a conserved canonical NRF-1 element responsible for sequence specific binding and transcriptional activation. Our identification of GABRB1 as a new target for NRF-1 in neurons suggests that genes coding for inhibitory neurotransmission may be coupled to cellular metabolism. This is especially meaningful as binding of NRF-1 to its element is sensitive to the kind of epigenetic changes that occur in multiple disorders associated with altered brain inhibition

    Positional clustering improves computational binding site detection and identifies novel cis-regulatory sites in mammalian GABA(A) receptor subunit genes

    Get PDF
    Understanding transcription factor (TF) mediated control of gene expression remains a major challenge at the interface of computational and experimental biology. Computational techniques predicting TF-binding site specificity are frequently unreliable. On the other hand, comprehensive experimental validation is difficult and time consuming. We introduce a simple strategy that dramatically improves robustness and accuracy of computational binding site prediction. First, we evaluate the rate of recurrence of computational TFBS predictions by commonly used sampling procedures. We find that the vast majority of results are biologically meaningless. However clustering results based on nucleotide position improves predictive power. Additionally, we find that positional clustering increases robustness to long or imperfectly selected input sequences. Positional clustering can also be used as a mechanism to integrate results from multiple sampling approaches for improvements in accuracy over each one alone. Finally, we predict and validate regulatory sequences partially responsible for transcriptional control of the mammalian type A γ-aminobutyric acid receptor (GABA(A)R) subunit genes. Positional clustering is useful for improving computational binding site predictions, with potential application to improving our understanding of mammalian gene expression. In particular, predicted regulatory mechanisms in the mammalian GABA(A)R subunit gene family may open new avenues of research towards understanding this pharmacologically important neurotransmitter receptor system

    GABA induces activity dependent delayed-onset uncoupling of GABA/benzodiazepine site interactions in neocortical neurons

    Get PDF
    Changes in the function of type A γ-aminobutyric acid receptors (GABAARs) are associated with neuronal development and tolerance to the sedative-hypnotic effects of GABAAR positive modulators. Persistent activation of GABAARs by millimolar concentrations of GABA occurs under physiological conditions as GABAergic fast-spiking neurons in neocortex and cerebellum exhibit basal firing rates of 5 to 50 Hz and intermittent rates up to 250 Hz, leaving a substantial fraction of synaptic receptors occupied persistently by GABA. Persistent exposure of neurons to GABA has been shown to cause a down-regulation of receptor number and an uncoupling of GABA/benzodiazepine (BZD) site interactions with a half-life of ∼24 h. Here, we report that a single brief exposure of neocortical neurons in primary culture to GABA for 5-10 min (t1/2 = 3.2 ± 0.2 min) initiates a process that results in uncoupling hours later (t1/2 = 12.1 ± 2.2 h). Initiation of delayed-onset uncoupling is blocked by co-incubation with picrotoxin or α-amanitin but is insensitive to nifedipine, indicating that uncoupling is contingent upon receptor activation and transcription but is not dependent on voltage-gated Ca2+ influx. Delayed-onset uncoupling occurs without a change in receptor number or a change in the proportion of α1 subunit pharmacology, as zolpidem binding affinity is unaltered. Such activity dependent latent modulation of GABAAR function that manifests as delayed-onset uncoupling may be relevant to physiological, pathophysiological, and pharmacological conditions where synaptic receptors are transiently exposed to GABA agonists for several minutes.Fil: Gravielle, Maria Clara. Boston University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Faris, Ramona. Boston University; Estados UnidosFil: Russek, Shelley J.. Boston University; Estados UnidosFil: Farb, David Howard. Boston University; Estados Unido

    Nuclear Respiratory Factor 1 (NRF-1) Controls the Activity Dependent Transcription of the GABA-A Receptor Beta 1 Subunit Gene in Neurons

    No full text
    While the exact role of β1 subunit-containing GABA-A receptors (GABARs) in brain function is not well understood, altered expression of the β1 subunit gene (GABRB1) is associated with neurological and neuropsychiatric disorders. In particular, down-regulation of β1 subunit levels is observed in brains of patients with epilepsy, autism, bipolar disorder and schizophrenia. A pathophysiological feature of these disease states is imbalance in energy metabolism and mitochondrial dysfunction. The transcription factor, nuclear respiratory factor 1 (NRF-1), has been shown to be a key mediator of genes involved in oxidative phosphorylation and mitochondrial biogenesis. Using a variety of molecular approaches (including mobility shift, promoter/reporter assays, and overexpression of dominant negative NRF-1), we now report that NRF-1 regulates transcription of GABRB1 and that its core promoter contains a conserved canonical NRF-1 element responsible for sequence specific binding and transcriptional activation. Our identification of GABRB1 as a new target for NRF-1 in neurons suggests that genes coding for inhibitory neurotransmission may be coupled to cellular metabolism. This is especially meaningful as binding of NRF-1 to its element is sensitive to the kind of epigenetic changes that occur in multiple disorders associated with altered brain inhibition
    corecore