701 research outputs found

    High-Precision Localization Using Ground Texture

    Full text link
    Location-aware applications play an increasingly critical role in everyday life. However, satellite-based localization (e.g., GPS) has limited accuracy and can be unusable in dense urban areas and indoors. We introduce an image-based global localization system that is accurate to a few millimeters and performs reliable localization both indoors and outside. The key idea is to capture and index distinctive local keypoints in ground textures. This is based on the observation that ground textures including wood, carpet, tile, concrete, and asphalt may look random and homogeneous, but all contain cracks, scratches, or unique arrangements of fibers. These imperfections are persistent, and can serve as local features. Our system incorporates a downward-facing camera to capture the fine texture of the ground, together with an image processing pipeline that locates the captured texture patch in a compact database constructed offline. We demonstrate the capability of our system to robustly, accurately, and quickly locate test images on various types of outdoor and indoor ground surfaces

    Scan registration for autonomous mining vehicles using 3D-NDT

    Get PDF
    Scan registration is an essential subtask when building maps based on range finder data from mobile robots. The problem is to deduce how the robot has moved between consecutive scans, based on the shape of overlapping portions of the scans. This paper presents a new algorithm for registration of 3D data. The algorithm is a generalization and improvement of the normal distributions transform (NDT) for 2D data developed by Biber and Strasser, which allows for accurate registration using a memory-efficient representation of the scan surface. A detailed quantitative and qualitative comparison of the new algorithm with the 3D version of the popular ICP (iterative closest point) algorithm is presented. Results with actual mine data, some of which were collected with a new prototype 3D laser scanner, show that the presented algorithm is faster and slightly more reliable than the standard ICP algorithm for 3D registration, while using a more memory efficient scan surface representation

    Compensation methods to support cooperative applications: A case study in automated verification of schema requirements for an advanced transaction model

    Get PDF
    Compensation plays an important role in advanced transaction models, cooperative work and workflow systems. A schema designer is typically required to supply for each transaction another transaction to semantically undo the effects of . Little attention has been paid to the verification of the desirable properties of such operations, however. This paper demonstrates the use of a higher-order logic theorem prover for verifying that compensating transactions return a database to its original state. It is shown how an OODB schema is translated to the language of the theorem prover so that proofs can be performed on the compensating transactions

    Automatic 3D facial model and texture reconstruction from range scans

    Get PDF
    This paper presents a fully automatic approach to fitting a generic facial model to detailed range scans of human faces to reconstruct 3D facial models and textures with no manual intervention (such as specifying landmarks). A Scaling Iterative Closest Points (SICP) algorithm is introduced to compute the optimal rigid registrations between the generic model and the range scans with different sizes. And then a new template-fitting method, formulated in an optmization framework of minimizing the physically based elastic energy derived from thin shells, faithfully reconstructs the surfaces and the textures from the range scans and yields dense point correspondences across the reconstructed facial models. Finally, we demonstrate a facial expression transfer method to clone facial expressions from the generic model onto the reconstructed facial models by using the deformation transfer technique

    Geometric deep learning

    Get PDF
    The goal of these course notes is to describe the main mathematical ideas behind geometric deep learning and to provide implementation details for several applications in shape analysis and synthesis, computer vision and computer graphics. The text in the course materials is primarily based on previously published work. With these notes we gather and provide a clear picture of the key concepts and techniques that fall under the umbrella of geometric deep learning, and illustrate the applications they enable. We also aim to provide practical implementation details for the methods presented in these works, as well as suggest further readings and extensions of these ideas
    corecore