research

Computational Light Routing: 3D Printed Optical Fibers for Sensing and Display

Abstract

Despite recent interest in digital fabrication, there are still few algorithms that provide control over how light propagates inside a solid object. Existing methods either work only on the surface or restrict themselves to light diffusion in volumes. We use multi-material 3D printing to fabricate objects with embedded optical fibers, exploiting total internal reflection to guide light inside an object. We introduce automatic fiber design algorithms together with new manufacturing techniques to route light between two arbitrary surfaces. Our implicit algorithm optimizes light transmission by minimizing fiber curvature and maximizing fiber separation while respecting constraints such as fiber arrival angle. We also discuss the influence of different printable materials and fiber geometry on light propagation in the volume and the light angular distribution when exiting the fiber. Our methods enable new applications such as surface displays of arbitrary shape, touch-based painting of surfaces, and sensing a hemispherical light distribution in a single shot.National Science Foundation (U.S.) (Grant CCF-1012147)National Science Foundation (U.S.) (Grant IIS-1116296)United States. Defense Advanced Research Projects Agency (Grant N66001-12-1-4242)Intel Corporation (Science and Technology Center for Visual Computing)Alfred P. Sloan Foundation (Sloan Research Fellowship

    Similar works