702 research outputs found

    Winter Habitat Quality but not Long- distance Dispersal Influences Apparent Reproductive Success in a Migratory Bird

    Get PDF
    Long- distance breeding and natal dispersal play central roles in many ecological and evolutionary processes, including gene flow, population dynamics, range expansion, and individual responses to fluctuating biotic and abiotic conditions. However, the relative contribution of long- distance dispersal to these processes depends on the ability of dispersing individuals to successfully reproduce in their new environment. Unfortunately, due to the difficulties associated with tracking dispersal in the field, relatively little is known about its reproductive consequences. Furthermore, because reproductive success is influenced by a variety of processes, disentangling the influence of each of these processes is critical to understanding the direct consequences of dispersal. In this study, we used stable hydrogen and carbon isotopes to estimate long- distance dispersal and winter territory quality in a migratory bird, the American Redstart (Setophaga ruticilla). We then applied Aster life-history models to quantify the strength of influence of these factors on apparent reproductive success. We found no evidence that male or female reproductive success was lower for long- distance dispersers relative to non- dispersing individuals. In contrast, carry- over effects from the winter season did influence male, but not female, reproductive success. Use of Aster models further revealed that for adult males, winter territory quality influenced the number of offspring produced whereas for yearling males, high- quality winter territories were associated with higher mating and nesting success. These results suggest that although long- distance natal and breeding dispersal carry no immediate reproductive cost for American Redstarts, reproductive success in this species may ultimately be limited by the quality of winter habitat

    Translocating Wild California Valley Quail to Texas: An Evaluation of Survival, Dispersal, Tracking Efficacy, and Roost Preference

    Get PDF
    Quail translocations are becoming increasingly popular in regions of suitable habitat where local quail populations have declined. In northeastern Texas, USA, northern bobwhite (Colinus virginianus) populations have drastically declined for over a century and have reached undetectable levels in many areas. As a result, the number of quail hunters and quail conservation funding have also declined. California valley quail (Callipepla californica; hereafter, valley quail) have increased across their range and have been translocated to many states and countries. Thus, the goal of this study was to determine whether translocating wild valley quail to Texas was feasible, and evaluate their survival, dispersal, roost location preference, and potential predator impacts. We translocated 748 wild valley quail from Idaho, USA to northeastern Texas in 2019 and 2020. We collected quail location data from very high frequency (VHF) and digital transmitters. Motion-triggered cameras, scent stations, simulated nests, and raptor transects were used to record predator presence and potential predator impacts. Survival of birds with tracking devices was 63% (VHF) in 2019, and 38.8% (VHF) and 92.5% (digital tag) in 2020. Survival was greater for quail with digital transmitters. Median dispersal distance was 633.5 m in 2019 and 246.6 m in 2020 for valley quail with VHF transmitters, and 310.4 m for quail with digital transmitters. Minimum convex polygon area medians were 4.3 ha in 2019 and 3.1 ha in 2020 for quail with VHF transmitters, and 16.1 ha in 2020 for quail with digital transmitters. Roost sites were primarily in young stands of oak trees. Median simulated nest survival was 2 days (minimum [min] = 1, interquartile range [IQR] = 2–5.4, maximum [max] = 23) in 2019, and 7.5 days (min = 2, IQR = 4.5–15.2, max = 23) in 2020. The most frequent mammalian predators observed were raccoons (Procyon lotor), feral hogs (Sus scrofa), and white-tailed deer (Odocoileus virginianus). Red-tailed hawks (Buteo jamaicensis) were the most frequent aerial predator. We completed the first documented translocation of wild California valley quail to Texas, demonstrating it is feasible. Future translocation may benefit from translocating more birds over a longer period of time, with more consistent methodology. The establishment of a sustainable population may require ≥7 years of translocation at a rate of 500 birds per year with \u3e2,000 ha of suitable habitat

    Mechanical Effects of Rice Hush Ash in Ultra-High Performance Concretes: A Matrix Study,

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84784/1/stults-RHA-2009.pd

    Modeling Spatially and Temporally Complex Range Dynamics When Detection is Imperfect

    Get PDF
    Species distributions are determined by the interaction of multiple biotic and abiotic factors, which produces complex spatial and temporal patterns of occurrence. As habitats and climate change due to anthropogenic activities, there is a need to develop species distribution models that can quantify these complex range dynamics. In this paper, we develop a dynamic occupancy model that uses a spatial generalized additive model to estimate non-linear spatial variation in occupancy not accounted for by environmental covariates. The model is flexible and can accommodate data from a range of sampling designs that provide information about both occupancy and detection probability. Output from the model can be used to create distribution maps and to estimate indices of temporal range dynamics. We demonstrate the utility of this approach by modeling long-term range dynamics of 10 eastern North American birds using data from the North American Breeding Bird Survey. We anticipate this framework will be particularly useful for modeling species’ distributions over large spatial scales and for quantifying range dynamics over long temporal scales

    The growing and vital role of botanical gardens in climate change research.

    Full text link
    Botanical gardens make unique contributions to climate change research, conservation, and public engagement. They host unique resources, including diverse collections of plant species growing in natural conditions, historical records, and expert staff, and attract large numbers of visitors and volunteers. Networks of botanical gardens spanning biomes and continents can expand the value of these resources. Over the past decade, research at botanical gardens has advanced our understanding of climate change impacts on plant phenology, physiology, anatomy, and conservation. For example, researchers have utilized botanical garden networks to assess anatomical and functional traits associated with phenological responses to climate change. New methods have enhanced the pace and impact of this research, including phylogenetic and comparative methods, and online databases of herbarium specimens and photographs that allow studies to expand geographically, temporally, and taxonomically in scope. Botanical gardens have grown their community and citizen science programs, informing the public about climate change and monitoring plants more intensively than is possible with garden staff alone. Despite these advances, botanical gardens are still underutilized in climate change research. To address this, we review recent progress and describe promising future directions for research and public engagement at botanical gardens.Publisher versio

    Migratory Behavior and Winter Geography Drive Differential Range Shifts of Eastern Birds in Response to Recent Climate Change

    Get PDF
    Over the past half century, migratory birds in North America have shown divergent population trends relative to resident species, with the former declining rapidly and the latter increasing. The role that climate change has played in these observed trends is not well understood, despite significant warming over this period. We used 43 y of monitoring data to fit dynamic species distribution models and quantify the rate of latitudinal range shifts in 32 species of birds native to eastern North America. Since the early 1970s, species that remain in North America throughout the year, including both resident and migratory species, appear to have responded to climate change through both colonization of suitable area at the northern leading edge of their breeding distributions and adaption in place at the southern trailing edges. Neotropical migrants, in contrast, have shown the opposite pattern: contraction at their southern trailing edges and no measurable shifts in their northern leading edges. As a result, the latitudinal distributions of temperate-wintering species have increased while the latitudinal distributions of neotropical migrants have decreased. These results raise important questions about the mechanisms that determine range boundaries of neotropical migrants and suggest that these species may be particularly vulnerable to future climate change. Our results highlight the potential importance of climate change during the nonbreeding season in constraining the response of migratory species to temperature changes at both the trailing and leading edges of their breeding distributions. Future research on the interactions between breeding and nonbreeding climate change is urgently needed

    Evaluation of the immunomodulatory effects of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate in C57BL/6 mice.

    Get PDF
    2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate was designed to replace perfluorooctanoic acid (PFOA), which has been mostly phased out of U.S. production due to environmental persistence, detectable human and wildlife serum concentrations, and reports of systemic toxicity. In rodent models, PFOA exposure suppresses T cell-dependent antibody responses (TDAR) and vaccine responses in exposed humans. To determine replacement compound effects on TDAR and related parameters, male and female C57BL/6 mice were gavaged with 0, 1, 10, or 100 mg/kg/day for 28 days. Mice immunized with antigen on day 24 were evaluated for TDAR and splenic lymphocyte subpopulations five days later. Serum and urine were collected for test compound concentrations and liver peroxisome proliferation was measured. Relative liver weight at 10 and 100 mg/kg and peroxisome proliferation at 100 mg/kg were increased in both sexes. TDAR was suppressed in females at 100 mg/kg. T lymphocyte numbers were increased in males at 100 mg/kg; B lymphocyte numbers were unchanged in both sexes. Females had less serum accumulation and higher clearance than males, and males had higher urine concentrations than females at all times and doses. While this PFOA-replacement compound appears less potent at suppressing TDAR relative to PFOA, it produces detectable changes in parameters affected by PFOA; further studies are necessary to determine its full immunomodulatory profile and potential synergism with other per- and polyfluoroalkyl substances of environmental concern

    Microglia control small vessel calcification via TREM2.

    Get PDF
    Microglia participate in central nervous system (CNS) development and homeostasis and are often implicated in modulating disease processes. However, less is known about the role of microglia in the biology of the neurovascular unit (NVU). In particular, data are scant on whether microglia are involved in CNS vascular pathology. In this study, we use a mouse model of primary familial brain calcification, Pdgfb <sup>ret/ret</sup> , to investigate the role of microglia in calcification of the NVU. We report that microglia enclosing vessel calcifications, coined calcification-associated microglia, display a distinct activation phenotype. Pharmacological ablation of microglia with the CSF1R inhibitor PLX5622 leads to aggravated vessel calcification. Mechanistically, we show that microglia require functional TREM2 for controlling vascular calcification. Our results demonstrate that microglial activity in the setting of pathological vascular calcification is beneficial. In addition, we identify a previously unrecognized function of microglia in halting the expansion of vascular calcification

    Associative Nitrogen Fixation Linked With Three Perennial Bioenergy Grasses In Field and Greenhouse Experiments

    Get PDF
    © 2020 The Authors. Associative nitrogen (N2)‐fixation (ANF) by bacteria in the root‐zone of perennial bioenergy grasses has the potential to replace or supplement N fertilizer and support sustainable production of biomass, but its application in marginal ecosystems requires further evaluation. In this study, we first combined both greenhouse and field experiments, to explore the N2 fixation effects of three temperate feedstocks Miscanthus × giganteus (giant miscanthus, Freedom), Panicum virgatum (switchgrass, Alamo), and Saccharum sp. (energycane, Ho 02‐147). In field studies across three growing seasons, plant and soil pools of candidate feedstocks were partially composed of N derived from the atmosphere (Ndfa). Energycane, giant miscanthus, and switchgrass were estimated to derive \u3e30%, %Ndfa. Greenhouse studies were also performed to trace isotopically labeled 15N2 into plant biomass and soil pools. Evidence for Ndfa was detected in all three feedstock grasses (using reference 15N of soil, chicory, and sorghum, δ15N~+7.0). Isotopically labeled 15N2 was traced into biomass (during grass elongation stage) and soil pools. Extrapolation of rates during the 24 hr labeling period to 50 days estimated 30%–55% of plant Ndfa, with the greatest Ndfa for energycane. The findings of the field natural abundance and greenhouse 15N2 feeding experiments provided complementary evidence that perennial bioenergy grasses have the potential to support relatively high rates of ANF, and accumulate diazotroph‐derived N into biomass when grown on non‐fertilized soil

    Creative Citizen Science Illuminates Complex Ecological Responses to Climate Change

    Get PDF
    Climate change is causing the timing of key behaviors (i.e., phenology) to shift differently across trophic levels and among some interacting organisms (e.g., plants and pollinators, predators and prey), suggesting that interactions among species are being disrupted (1, 2). Studying the phenology of interactions, however, is difficult, which has limited researchers’ ability to zero in on changes in specific interactions or on the consequences of mismatches. In PNAS, Hassall et al. (3) use a combination of citizen science techniques to investigate the effects of climate change on dozens of specific interactions. They focus on a Batesian mimicry complex involving stinging bees and wasps, stingless syrphid flies (also known as hoverflies) that mimic their appearance, and avian predators. The methods used by Hassall et al. (3) continue an upsurge of innovations in climate change ecology research, in which the role of citizen science is expanding to provide new approaches to complex challenges
    corecore