598 research outputs found

    Relativistic analysis of the LISA long range optical links

    Full text link
    The joint ESA/NASA LISA mission consists in three spacecraft on heliocentric orbits, flying in a triangular formation of 5 Mkm each side, linked by infrared optical beams. The aim of the mission is to detect gravitational waves in a low frequency band. For properly processing the science data, the propagation delays between spacecraft must be accurately known. We thus analyse the propagation of light between spacecraft in order to systematically derive the relativistic effects due to the static curvature of the Schwarzschild spacetime in which the spacecraft are orbiting with time-varying light-distances. In particular, our analysis allows to evaluate rigorously the Sagnac effect, and the gravitational (Einstein) redshift.Comment: 6 figures; accepted for publication in PR

    Theorems in the tensor calculus, with applications to relativity

    Get PDF

    Gravitational waves about curved backgrounds: a consistency analysis in de Sitter spacetime

    Get PDF
    Gravitational waves are considered as metric perturbations about a curved background metric, rather than the flat Minkowski metric since several situations of physical interest can be discussed by this generalization. In this case, when the de Donder gauge is imposed, its preservation under infinitesimal spacetime diffeomorphisms is guaranteed if and only if the associated covector is ruled by a second-order hyperbolic operator which is the classical counterpart of the ghost operator in quantum gravity. In such a wave equation, the Ricci term has opposite sign with respect to the wave equation for Maxwell theory in the Lorenz gauge. We are, nevertheless, able to relate the solutions of the two problems, and the algorithm is applied to the case when the curved background geometry is the de Sitter spacetime. Such vector wave equations are studied in two different ways: i) an integral representation, ii) through a solution by factorization of the hyperbolic equation. The latter method is extended to the wave equation of metric perturbations in the de Sitter spacetime. This approach is a step towards a general discussion of gravitational waves in the de Sitter spacetime and might assume relevance in cosmology in order to study the stochastic background emerging from inflation.Comment: 17 pages. Misprints amended in Eqs. 50, 54, 55, 75, 7

    Heat Kernel Asymptotics on Homogeneous Bundles

    Full text link
    We consider Laplacians acting on sections of homogeneous vector bundles over symmetric spaces. By using an integral representation of the heat semi-group we find a formal solution for the heat kernel diagonal that gives a generating function for the whole sequence of heat invariants. We argue that the obtained formal solution correctly reproduces the exact heat kernel diagonal after a suitable regularization and analytical continuation.Comment: 29 pages, Proceedings of the 2007 Midwest Geometry Conference in Honor of Thomas P. Branso

    Complex Kerr Geometry and Nonstationary Kerr Solutions

    Full text link
    In the frame of the Kerr-Schild approach, we consider the complex structure of Kerr geometry which is determined by a complex world line of a complex source. The real Kerr geometry is represented as a real slice of this complex structure. The Kerr geometry is generalized to the nonstationary case when the current geometry is determined by a retarded time and is defined by a retarded-time construction via a given complex world line of source. A general exact solution corresponding to arbitrary motion of a spinning source is obtained. The acceleration of the source is accompanied by a lightlike radiation along the principal null congruence. It generalizes to the rotating case the known Kinnersley class of "photon rocket" solutions.Comment: v.3, revtex, 16 pages, one eps-figure, final version (to appear in PRD), added the relation to twistors and algorithm of numerical computations, English is correcte

    Accurate proteome-wide protein quantification from high-resolution 15N mass spectra

    Get PDF
    In quantitative mass spectrometry-based proteomics, the metabolic incorporation of a single source of 15N-labeled nitrogen has many advantages over using stable isotope-labeled amino acids. However, the lack of a robust computational framework for analyzing the resulting spectra has impeded wide use of this approach. We have addressed this challenge by introducing a new computational methodology for analyzing 15N spectra in which quantification is integrated with identification. Application of this method to an Escherichia coli growth transition reveals significant improvement in quantification accuracy over previous methods

    Parting with illusions in evolutionary ethics

    Full text link
    I offer a critical analysis of a view that has become a dominant aspect of recent thought on the relationship between evolution and morality, and propose an alternative. An ingredient in Michael Ruse's 'error theory' (Ruse 1995) is that belief in moral (prescriptive, universal, and nonsubjective) guidelines arose in humans because such belief results in the performance of adaptive cooperative behaviors. This statement relies on two particular connections: between ostensible and intentional types of altruism, and between intentional altruism and morality. The latter connection is problematic because it makes morality redundant, its role having already been fulfilled by the psychological dispositions that constitute intentional altruism. Both behavioral ecology and moral psychology support this criticism, and neither human behavioral flexibility nor the self-regard / other-regard distinction can provide a defense of the error theory. I conclude that morality did not evolve to curb rampant selfishness; instead, the evolutionarily recent 'universal law' aspect of morality may function to update behavioral strategies which were adaptive in the paleolithic environment of our ancestors (to which our psychological dispositions are best adapted), by means of norms more appropriate to our novel social environment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42482/1/10539_2004_Article_5102509.pd

    A Mean-Value Laplacian For Finsler Spaces

    Full text link
    Part I of this thesis defines a Laplacian A for a Finsler space; we obtain A by requiring that ( A f) ( x) for a function f measures the infinitesimal average of f around x. This A is a linear, elliptic, 2nd-order differential operator. Furthermore, Af can be written in a divergence form, like the Riemannian Laplacian, but with respect to a canonical osculating Riemannian metric and Busemann's intrinsic volume form. We interpret divergence form as the result of minimizing a certain energy functional on Finsler space, and further use this approach to define harmonic forms, and harmonic mappings between Finsler manifolds. As a byprod-uct of the Laplacian, in Part I1 we derive a simple volume-form inequality which characterizes Riemannian manifolds, and define a scalar invariant V ( x) for Finsler spaces. We show that, on a Berwald space, the met-ric's first derivatives vanish in normal co-ordinates, and use that result t
    corecore