1,031 research outputs found
Investigating the effects of odour integration in reading and learning experiences
Books are the tools used for reading novels and stories, but also for educational purposes. Conventional books have undergone a radical transformation in recent years due to the use of new technologies. However, even today the technological devices used for reading e-books are still poorly exploited, despite the fact that they represent a fundamental tool to make the reading experience more immersive by using a complete multisensory approach. In this perspective, one sense that represents an important element of human perception is the sense of smell. Consequently, authors make the hypothesis that the introduction of odours during reading sessions could increase the user experience and the learning performances. In order to demonstrate these hypotheses, the authors have defined and carried out several experimental testing sessions. The analysis of the collected data proved that the introduction of odour does not disturb the reader during reading activities but, on the contrary, can actually make the experience more immersive. Similarly, odours do not disturb studying activities, but they can instead increase the level of concentration and people's learning performance
Improvements in BepiColombo and JUICE radio science experiments with a multi-station tracking configuration for the reduction of Doppler noise
Radio science experiments for planetary geodesy mostly rely on measurements of the Doppler shift of microwave signals sent to a spacecraft by an Earth station, and retransmitted back coherently in phase to the same antenna (two-way link). The retransmitted signal can also be received by a different station in a listen-only configuration (three-way link). In state-of-the-art tracking systems, such as the ones will be used on the future ESA's missions JUICE and BepiColombo, the Doppler error budget is dominated by local noise sources arising at the ground-station, in particular tropospheric scintillation and unmodeled motions of the antenna's structure. In this work, a novel technique aimed at reducing these disturbances is analyzed, with particular emphasis on its benefits to BepiColombo's and JUICE's radio science experiments. The method, referred to as Time-Delay Mechanical-noise Cancellation (TDMC), relies on simultaneous two-way and three-way spacecraft tracking, the latter employing a stiffer listen-only antenna with better mechanical stability and located in a favorable dry region more immune to tropospheric noise. In fact, a proper linear combination of time-shifted observables from the two-way and three-way links can replace local noises of the two-way ground-station with those coming from the listen-only antenna, translating into increased accuracy of the final measurements, while preserving the original Doppler content. We show the results of covariance analyses performed with a multi-arc weighted least square estimator for the entire BepiColombo's Hermean phase and JUICE's flybys of Callisto. We compare the two solutions obtained with and without the application of the TDMC technique. For BepiColombo and JUICE radio science experiments, the two-way links are baselined from the 35-m DSA-3 (MalargĂŒe, Argentina) and the 34-m DSS 25 (Goldstone, California). For the three-way link, we select the 12-m Large Latin American Millimeter Array (LLAMA) antenna for three reasons: 1) its mechanical rigidity with respect to large beam-waveguide antennas, 2) its unique position in the extremely dry Puna de Atacama desert, that assures low tropospheric noise, and 3) its limited longitudinal separation from the two other ground-stations, granting sufficient common visibility time to perform the requested combination of the observables. Besides its noise-reduction effect, enabling unprecedented levels of accuracy on Doppler measurements, TDMC provides also a back-up for unique events: a crucial satellite flyby or a specific passage over a site of particular geophysical interest. Indeed, measurements become virtually independent of unfavorable meteorological conditions at the transmitting station
Clinical Features of 705 Borrelia burgdorferi Seropositive Patients in an Endemic Area of Northern Italy
Background. Lyme Borreliosis is a multisystemic infection caused by spirochetes of Borrelia burgdorferi sensu lato complex.
The features of Lyme Borreliosis may differ in the various geographical areas, primarily between the manifestations found in
America and those found in Europe and Asia. Objective. to describe the clinical features of Lyme Borreliosis in an endemic
geographic area such as Friuli-Venezia Giulia in the Northeastern part of Italy. Methods.The medical records of patients resulted
seropositive for Borrelia burgdorferi have been retrospectively recorded and analyzed. Results. Seven hundred and five patients met
the inclusion criteria, 363 males and 342 females. Erythema migrans was the most common manifestation, detected in 437 patients.
Other classical cutaneous manifestations included 58 cases of multiple erythema migrans, 7 lymphadenosis benigna cutis, and 18
acrodermatitis chronica atrophicans. The musculoskeletal system was involved in 511 patients. Four hundred and sixty patients
presented a neurological involvement. Flu-like symptoms preceded or accompanied or were the only clinical feature in 119 patients.
Comments.The manifestations of Lyme borreliosis recorded in this study are similar to the ones of other endemic areas in Europe,
even if there are some peculiar features which are different from those reported in Northern Europe and in the USA
Effectiveness of Intraoperative Parathyroid Monitoring (ioPTH) in predicting a multiglandular or malignant parathyroid disease
Aim The main goal of our study was to confirm the usefulness of intra-operative parathyroid hormone (PTH) monitoring (ioPTH) when using minimally invasive techniques for treatment of sporadic Primary hyperparathyroidism (pHTP). Furthermore, we aimed to evaluate if ioPTH monitoring may help to predict the etiology of primary hyperparathyroidism, especially in malignant or multiglandular parathyroid disease. Methods A retrospective review of 125 consecutive patients with pHPT who underwent parathyroidectomy between 2001 and 2016\ua0at the Department of General Surgery was performed. For each patient, the specific preoperative work-up consisted of: high-resolution US of the neck by a skilled sonographer, sestamibi parathyroid scan, laryngoscopy, and serum measurement of PTH, serum calcium levels, and serum 25(OH)D levels. Results The study included 125 consecutive patients who underwent surgery for pHPT. At the histological examination, we registered 113 patients with simple adenomatous pathology (90,4%), 5 atypical adenomas (4%), 3 cases of parathyroid carcinoma (2,4%), and 4 histological exams of different nature (3,2%). Overall, 6 cases (4,8%) of multiglandular disease were found. We reported 10 cases (8%) of recurrent/persistent hyperparathyroidism: 1/10 in a patient affected by atypical adenoma, 9/10 in patients with benign pathology. Regarding these 10 cases, in three (30%) patients, ioPTH wasn't dosed (only frozen section (FS) exam was taken), in 5 cases (50%) ioPTH dropped more than 50% compared to basal value (false negative results), and in 2 (20%) cases, ioPTH did not drop >50% from the first samples taken, the extemporary exam had confirmed the presence of adenoma and the probable second hyperfunctioning adenoma was not found. Conclusions IoPTH determinations ensure operative success of surgical resection in almost all hyperfunctioning tissue; in particular it is very important during minimally invasive parathyroidectomy, as it allows avoiding bilateral neck exploration. The use of ioPTH monitoring offer increased sensitivity in detecting multiglandular disease and can minimize the need and risk associated with recurrent operations, and may facilitate cost-effective minimally invasive surgery. Moreover, intraoperative PTH monitoring could be a reliable marker to predict a malignant disease during parathyroidectomy, showing higher ioPTH baseline value and superior drop compared to benign disease
Investigating the effects of odour integration in reading and learning experiences
Books are the tools used for reading novels and stories, but also for educational purposes. Conventional books have undergone a radical transformation in recent years due to the use of new technologies. However, even today the technological devices used for reading e-books are still poorly exploited, despite the fact that they represent a fundamental tool to make the reading experience more immersive by using a complete multisensory approach. In this perspective, one sense that represents an important element of human perception is the sense of smell. Consequently, authors make the hypothesis that the introduction of odours during reading sessions could increase the user experience and the learning performances. In order to demonstrate these hypotheses, the authors have defined and carried out several experimental testing sessions. The analysis of the collected data proved that the introduction of odour does not disturb the reader during reading activities but, on the contrary, can actually make the experience more immersive. Similarly, odours do not disturb studying activities, but they can instead increase the level of concentration and people's learning performance
Detection and classification of man-made objects for the autonomy of underwater robots
Recent developments in marine technologies allow underwater vehicles to perform survey missions for data collection in an automatic way. The scientific community is now focusing on endowing these vehicles with strong perception capabilities, aiming at full autonomy and decision-making skills. Such abilities would bring benefits to a wide range of field applications, e.g. Inspection and Maintenance (I&M) of man-made structures, port security, and marine rescue. Indeed, most of these tasks are currently carried out employing remotely operated vehicles, making the presence of humans in water necessary. Projects like Metrological Evaluation and Testing of Robots in International CompetitionS (METRICS), funded by the European Commission, are promoting research on this field by organising events such as the Robotics for Asset Maintenance and Inspection (RAMI) competition. In particular, this competition requires participants to develop perception techniques capable of identifying a set of specific targets. Within such context, this paper presents an algorithm able to detect and classify Objects of Potential Interest (OPIs) in underwater camera images. First, the proposed solution compensates for the quality degradation of underwater images by applying color enhancement and restoration procedures. Then, it exploits deep-learning techniques, as well as color and shape based methods, to recognize and correctly label the predefined OPIs. Preliminary results of the implemented neural network using restored images are provided, and a mean Average Precision (mAP) of about 92% was achieved on the dataset provided to the RAMI competition participating teams by the NATO Science and Technology Organization Centre for Maritime Research and Experimentation (STO CMRE)
Analysis of Cassini radio tracking data for the construction of INPOP19a: a new estimate of the Kuiper belt mass
Context. Recent discoveries of new trans-Neptunian objects have greatly increased the attention by the scientific community to this relatively unknown region of the solar system. The current level of precision achieved in the description of planet orbits has transformed modern ephemerides in the most updated tools for studying the gravitational interactions between solar system bodies. In this context, the orbit of Saturn plays a primary role, especially thanks to Cassini tracking data collected during its 13-year mission around the ringed planet. Planetary ephemerides are currently mainly built using radio data, in particular with normal points derived from range and Doppler observables exchanged between ground stations and interplanetary probes. Aims. We present an analysis of Cassini navigation data aimed at producing new normal points based on the most updated knowledge of the Saturnian system developed throughout the whole mission. We provide additional points from radio science dedicated passes of Grand Finale orbits and Titan flybys. An updated version of the INPOP planetary ephemerides based upon these normal points is presented, along with a new estimate of the mass of trans-Neptunian object rings located in the 2:1 and 3:2 mean motion resonances with Neptune. Methods. We describe in detail the orbit determination process performed to construct the normal points and their associated uncertainties and how we process those points to produce a new planetary ephemeris. Results. From the analysis, we obtained 623 new normal points for Saturn with metre-level accuracy. The ephemeris INPOP19a, including this new dataset, provides an estimated mass for the trans-Neptunian object rings of (0.061â
屉
0.001)Mâ
Induced pluripotent stem cells in hematology: current and future applications
Reprogramming somatic cells into induced pluripotent stem (iPS) cells is nowadays approaching effectiveness and clinical grade. Potential uses of this technology include predictive toxicology, drug screening, pathogenetic studies and transplantation. Here, we review the basis of current iPS cell technology and potential applications in hematology, ranging from disease modeling of congenital and acquired hemopathies to hematopoietic stem and other blood cell transplantation
Optimization of Anti-SARS-CoV-2 Treatments Based on Curcumin, Used Alone or Employed as a Photosensitizer.
Curcumin, the bioactive compound of the spice Curcuma longa, has already been reported as a potential COVID-19 adjuvant treatment due to its immunomodulatory and anti-inflammatory properties. In this study, SARS-CoV-2 was challenged with curcumin; moreover, curcumin was also coupled with laser light at 445 nm in a photodynamic therapy approach. Curcumin at a concentration of 10 ÎŒM, delivered to the virus prior to inoculation on cell culture, inhibited SARS-CoV-2 replication (reduction >99%) in Vero E6 cells, possibly due to disruption of the virion structure, as observed using the RNase protection assay. However, curcumin was not effective as a prophylactic treatment on already-infected Vero E6 cells. Notably, when curcumin was employed as a photosensitizer and blue laser light at 445 nm was delivered to a mix of curcumin/virus prior to the inoculation on the cells, virus inactivation was observed (>99%) using doses of curcumin that were not antiviral by themselves. Photodynamic therapy employing crude curcumin can be suggested as an antiviral option against SARS-CoV-2 infection
Evolution of INPOP planetary ephemerides and Bepi-Colombo simulations
We give here a detailed description of the latest INPOP planetary ephemerides
INPOP20a. We test the sensitivity of the Sun oblateness determination obtained
with INPOP to different models for the Sun core rotation. We also present new
evaluations of possible GRT violations with the PPN parameters ,
and . With a new method for selecting acceptable alternative
ephemerides we provide conservative limits of about and
for and respectively using the
present day planetary data samples. We also present simulations of Bepi-Colombo
range tracking data and their impact on planetary ephemeris construction. We
show that the use of future BC range observations should improve these
estimates, in particular . Finally, interesting perspectives for the
detection of the Sun core rotation seem to be reachable thanks to the BC
mission and its accurate range measurements in the GRT frame.Comment: Proceedings of the IAU Symposium 364 "Multi-scale dynamics of space
objects
- âŠ