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Abstract: Recent developments in marine technologies allow underwater vehicles to perform
survey missions for data collection in an automatic way. The scientific community is now
focusing on endowing these vehicles with strong perception capabilities, aiming at full autonomy
and decision-making skills. Such abilities would bring benefits to a wide range of field
applications, e.g. Inspection and Maintenance (I&M) of man-made structures, port security,
and marine rescue. Indeed, most of these tasks are currently carried out employing remotely
operated vehicles, making the presence of humans in water necessary. Projects like Metrological
Evaluation and Testing of Robots in International CompetitionS (METRICS), funded by the
European Commission, are promoting research on this field by organising events such as
the Robotics for Asset Maintenance and Inspection (RAMI) competition. In particular, this
competition requires participants to develop perception techniques capable of identifying a set of
specific targets. Within such context, this paper presents an algorithm able to detect and classify
Objects of Potential Interest (OPIs) in underwater camera images. First, the proposed solution
compensates for the quality degradation of underwater images by applying color enhancement
and restoration procedures. Then, it exploits deep-learning techniques, as well as color and
shape based methods, to recognize and correctly label the predefined OPIs. Preliminary results
of the implemented neural network using restored images are provided, and a mean Average
Precision (mAP) of about 92% was achieved on the dataset provided to the RAMI competition
participating teams by the NATO Science and Technology Organization Centre for Maritime
Research and Experimentation (STO CMRE).
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1. INTRODUCTION man-made infrastructures, environmental monitoring, dis-

aster response intervention, and port protection. Within

In the past decades, researchers focused their studies on
the development and optimisation of Autonomous Under-
water Vehicles (AUVs) able to autonomously navigate and
perform data collection missions in underwater environ-
ment. Despite satisfying results were achieved in this field,
tasks performed by AUVs are usually based on predefined
missions characterised by poor decision-making capabil-
ities. Therefore, underwater robots are often joined by
divers when performing Inspection & Maintenance (I&M)
tasks in complex scenarios, risking jeopardising the safety
of the latter due to the hazards of the environment in
which the operations are conducted. For this reason, the
ability to perform fully autonomous decisions to success-
fully complete a mission is becoming a key requirement
for AUVs in many industrial scopes, such as I&M of
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this scope, the Metrological Evaluation and Testing of
Robots in International CompetitionS (METRICS (2022))
project, funded by European Union’s Horizon 2020 re-
search and innovation program, organises robotics com-
petition to promote and motivate research in this field.
In particular, the first virtual edition of the Robotics for
Asset Maintenance and Inspection (RAMI) competition
(Ferri et al. (2021)) took place this year (July 2022) and
was led by NATO Science and Technology Organization
Centre for Maritime Research and Experimentation (STO
CMRE). The competition required participating teams to
develop detection and classification algorithms capable of
identifying a predefined set of Objects of Potential Interest
(OPIs), consisting of colored buoys, digits and red mark-
ers used to simulate hazardous and hostile environments
where human intervention is impracticable.

Due to the characteristics of the underwater environment,
developing an accurate object detection and classification
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algorithm able to deal with images obtained by underwater
cameras is a challenging task. Indeed, underwater im-
ages are affected by light attenuation and scattering phe-
nomena, resulting in limited distance visibility, contrast
degradation, hazy, and greenish or bluish scenes. Existing
image processing techniques for improving the quality of
underwater images can be grouped into two classes: image
restoration and image enhancement. The former attempts
to remove haze from images, relying on the physics of light
propagation and exploiting the similarities between light
propagation in fog and underwater. In particular, the Dark
Channel Prior (DCP) (He et al. (2011)), based on the
studies of Jaffe (1990), was introduced and several algo-
rithm DCP-based were developed. DCP is based on the
observation that, in most of the non-sky patches of outdoor
haze-free images, some pixels often have low intensity in
at least one color channel. Thus, in hazy images, the main
intensity contribution is done by the atmospheric light.
Based on the observation that in underwater environment
the attenuation of the red channel is very strong and that
the predominant source of information lies in the blue and
green color channels, Drews Jr et al. (2013) proposed to
exploit only the latter channels to estimate and remove
the image haze. Galdran et al. (2015) developed the Red
Channel Prior (RCP) relying on the observation that red
intensity rapidly decays and its weight in the red Channel
image decreases. Instead, Luczynski and Birk (2018) in-
troduced the underwater-ready DCP, that shifts the color
space (so that blue becomes white) before estimating the
underwater atmospheric light.

On the other hand, image enhancement improves contrast
and colors of images exploiting pixel intensity redistribu-
tion and white-balancing techniques; it uses qualitative
subjective criteria to produce a more visually pleasing
image. Among these methods, Contrast Limited Adap-
tive Histogram Equalisation (CLAHE) (Zuiderveld (1994))
and ~y-correction, are the most used algorithm to improve
contrast and visibility in low-light images. Gray World
Assumption (GWA), developed by Buchsbaum (1980), is
one of the most used white-balancing process, together
with Gray-Edge Assumption (GEA) introduced by van de
Weijer et al. (2007). However, due to the low intensity of
RGB components occurring in underwater images, these
methods could introduce artifacts, halos, and color distor-
tion. In the attempt to minimize the occurrence of these
issues, Codruta et al. (2017) showed that better results
are obtained if a red and blue channel pre-compensation
is applied before the white-balancing procedure.

Several efforts were made trying to overcome the chal-
lenges that underwater object detection and classification
algorithms have to face. Vasamsetti et al. (2018) proposed
a detector based on the collection of space-time data tex-
tures from successive frames. Zhou et al. (2015) and Seese
et al. (2016) employed Gaussian Mixture Models (GMMs)
for background modelling and blob analysis to recognise
fish, jellyfishes, and sea snakes. Bazeille et al. (2012) de-
veloped a color matching algorithm to identify man-made
objects, based on the modeling of the color modification
by the water, while Hou et al. (2016) developed a detection
method based on color and shape features. Nevertheless,
due to the extreme variability and inconstancy of the
underwater environment conditions, it is hard to obtain
good performance of detection and classification solutions
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relying only on geometric and physical characteristics,
such as shape and color. Artificial Intelligent (AI)-based
techniques were therefore employed in an effort to address
such problems. For example, Mahmood et al. (2016) pro-
posed the first application of deep learning to the coral reef
classification problem using a pre-trained VGGNet. The
ZooplanktonNet, inspired by VGGNet, were developed by
Dai et al. (2016) to detect and classify zooplankton. Re-
cently, many attempts were carried out on fish species clas-
sification problem, exploiting Faster Region-based Convo-
lutional Neural Network (R-CNN) (Ren et al. (2015)) and
You Only Look Once (YOLO v3) (Redmon and Farhadi
(2018)). In particular, Sung et al. (2017), proposed a real-
time fish detection algorithm based on YOLQO, achieving a
classification accuracy of 93%. Zeng et al. (2021) utilised
Faster R-CNN together with adversarial occlusion network
to improve the performance of a classic Faster R-CNN
on the marine organism detection problem. Recently, em-
ploying the Mask R-CNN, proposed by He et al. (2017),
Conrady et al. (2022) developed an automated detection
and classification algorithm for African Roman sea bream.

Many results were achieved exploiting deep neural net-
work and computer vision-based techniques in the field
of marine biology. Furthermore, the application of such
solutions to the problem of detection and classification
of artificial structures is getting more and more attention
from the scientific community. Some relevant results were
presented in Zacchini et al. (2020). Two neural networks
inspired by the Single Shot Multibox Detector (SSD) and
the Faster R-CNN were trained and validated to detect
artificial structures from acoustic and optical images, re-
spectively. Other results were achieved by employing deep
learning solutions on acoustic images obtained from a
Forward-Looking Sonar (FLS). In Palomeras et al. (2022)
the authors implemented a detection and classification
algorithm based on CNNs and probabilistic maps capable
of identify mine-like objects, while in Zacchini et al. (2022)
the authors compared the performances of an SSD and a
Mask R-CNN aiming at identifying and localizing OPIs in
FLS imagery.

This work proposes an object detection and classifica-
tion solution implementing deep-learning, as well as color-
based, and shape-based algorithms, aimed to recognize
OPIs in underwater environment. The dataset used during
the development of the algorithm is the one provided by
NATO STO CMRE to the RAMI competition participat-
ing teams as support for software development. The paper
is organised as follows: in Section 2 the dataset is illus-
trated and the proposed algorithm pipeline is described,
as well as details on the Neural Network (NN) fine-tuning
procedure. In Section 3, preliminary results about the
performance of the implemented NN are presented and
commented. At last, in Section 4 conclusions are drawn
and future developments are proposed.

2. DETECTION AND CLASSIFICATION
2.1 Dataset description
The dataset provided as support for the software devel-

opment is composed of 957 images in .png format, with
dimension of 1280 x 720. All the images were acquired in
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underwater environment, in different conditions, at NATO
STO CMRE in La Spezia, Italy. The whole dataset is
divided into five OPIs classes:

e class 1: colored buoys;

e class 2: black numbers on yellow pipes;
e class 3: black numbers over red markers;
e class 4: red markers over yellow pipes;

[ )

class 5: no OPIL

Specifically, class 1 contains 253 images of underwater
buoys characterised by three different colors: 121 red
buoys, 86 white buoys, and 46 yellow buoys. class 2
includes 288 images of four different black digits over
yellow pipes: 52 images with digit 71”7, 56 with digit 72",
85 with digit ”3”, and 95 with ”4”. class 3 consist of 84
images with four different black digits located over red
markers. In this case, the dataset involves only sample
images with digit ”76”. Regarding digits ”3”, 74", and
757, only single digital drawings are provided. Lastly,
80 images of red markers comprises class 4, while 252
images without any OPI constitutes class 5. In Figure 1,
samples extracted from the dataset are shown.

Fig. 1. Sample images extracted from the dataset.

2.2 Algorithm overview

In this section, an overview of the algorithm pipeline,
summarised in Figure 2, is presented. At first, the input
image is pre-processed aiming at compensating the quality
degradation mainly caused by particle suspension and
scattering phenomena. This was done to improve the
performance of the subsequently applied techniques.

As depicted in Figure 3, the color reconstruction stage
is composed by four different steps. As done by Codruta
et al. (2017), a red and blue channels compensation is
executed before the white-balancing procedure, so that
the occurrence of red artifacts is minimised. Then, GWA
(Buchsbaum (1980)) is applied with the aim to: computing
the white point, shifting the mean value of each RGB
channel and compensating the color cast induced by the
underwater environment. To solve contrast degradation
and haziness, two further algorithms are applied in series:
through the CLAHE algorithm (Zuiderveld (1994)) the
image contrast is increased, while, applying the DCP
algorithm (He et al. (2011)) the image haze is reduced.
After the color processing stage, an R-CNN inspired by the
Faster R-CNN (Ren et al. (2015)), is fine-tuned and used to
predict the probability that one or more OPIs are present
in the image. This network outputs the pixel coordinates
in the image plane of the bounding box containing the OPI
and the associated discrete probability that the detected
object belongs to a target class. Due to the limited number
of images contained in the dataset, transfer learning and
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Fig. 2. Scheme of the proposed algorithm for OPIs detec-
tion and classification.
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Fig. 3. Steps of the color reconstruction algorithm.

fine-tuning procedures were applied. With this aim, the
OPIs were distinguished into the following classes: i)
colored buoys, ii) a unique class composed of OPIs with
black numbers either on yellow pipes or on red markers,
iii) red markers, and iv) no OPIs. In the event that at
least one of the OPIs is detected, by the Faster R-CNN,
the patches containing the object are extracted. Hence,
color and shape based algorithms are applied aiming at
identifying the exact instance of the recognised object.

In particular:

e If a buoy (class 1) is detected, a Hue-Saturation-
Value (HSV) filter, together with checks on the round-
ness of the located object, are employed to estimate
the buoy color. Then, the position in pixels of the
OPI centroid is estimated applying the Hough circle
transform (Hough (1962));

o If a digit is found (class 2 or class 3) an HSV filter
is employed to detect the presence of red color in the
extracted patch and to figure out whether the digit is
located on a yellow pipe or on a red marker (class 2
and class 3, respectively). At last, to recognise the
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digit, the image patch is binarised through Otsu’s
method (Otsu (1979)) and a CNN, trained on MNIST
(Lecun et al. (1998)) and fine-tuned through a dataset
created from-scratch exploiting the provided data, is
used;

o If ared marker is detected (class 4), an HSV filter is
applied to the extracted patch to detect the presence
of red color and to refine the selection rectangle from
which the OPI centroid is estimated;

e Lastly, if none of the OPIs is found, the image is
classified as belonging to class 5.

2.3 Faster R-CNN fine-tuning

In this work, a keras (Chollet et al. (2015)) implementa-
tion of the Faster R-CNN;, based on the code released by
Ren et al. (2015), was used and the fine-tuning procedure
was carried out exploiting Google Colaboratory (Bisong
(2019)) and the GPU made available in this framework
(NVIDIA Tesla T4). Moreover, a ResNet50 (He et al.
(2015)) pre-trained on ImageNet (Deng et al. (2009)) was
employed as backbone of the Faster R-CNN. As first step,
the provided dataset was enriched by doubling it with a
processed version of the available images, using the color
restoration and color enhancement algorithms described
in section 2.2. Then it was entirely labeled and ground-
truth boxes were defined through an open-source labelling
tool, named Labellmg (Tzutalin (2015)). The latter au-
tomatically creates an annotation file in .xml format for
each image, in which labels and ground-truth bounding
boxes coordinates are saved. The available dataset was
split into training, validation and test set with a ratio
of 70:20:10, respectively. Given the limited number of
available image samples, data augmentation techniques,
i.e. random rotation, vertical flip and horizontal flip, to-
gether with early-stopping procedures were employed to
increase the training set and to prevent over-fitting. At
last, the test set was used to evaluate the performance of
the NN. Table 1 shows the hyperparameters selected for
the training procedure.

Table 1. Training hyperparameters

Hyperparameters Values
Image size [416,416]
Anchor box scales 128, 256
Anchor box ratios  [1,1], [1,2], [2,1]
Learning rate le—5
Optimizer Adam
Epochs 37
3. RESULTS

In this section preliminary results regarding the detection
and classification performance of the Faster R-CNN net-
work on the compensated images are presented and com-
mented. To rank the network results, Average Precision
(AP) and mean Average Precision (mAP) were used ac-
cording to PASCAL VOC evaluation metrics (Everingham
et al. (2015)). These metrics, here computed exploiting the
tool provided by Padilla et al. (2021), are generally used
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by the research community to evaluate and quantify the
performance of detection algorithms in different fields.

8.1 Class 1: buoys

Figure 4 shows some prediction results for class 1, where
the ground-truth and prediction bounding boxes are de-
picted in green and red, respectively, in Figure 4a and 4b.
As it can be seen by Figure 4c and 4d, the Faster R-CNN
is able to detect and classify the buoys despite the differ-
ent environment conditions and their colors. The network
achieved an average prediction time of about 3 frame per
second for each input image and an AP of about 98%. It
can be noticed how the color processing algorithm helps
obtaining a slightly more accurate predicted bounding
boxes with respect to the ground-truth one, increasing the
intersection over union value from 71.5% to 73.8%. Fur-
thermore, Figure 4c shows how the deep-learning approach
is able to accurately detect the buoys despite of the cable-
mooring presence. The parameters for the adjustment of
the red and blue channels were tuned on the entire dataset.
This could result in a red channel overcompensation, as
visible in the brightest areas of Figure 4b and 4c.

(¢) Prediction on red buoy

(d) Prediction on white buoy

Fig. 4. Faster R-CNN results on the class 1 OPIs.

3.2 Class 2 and class 3: digits

For what concerns the OPIs belonging to class 2 and
class 3, considered as a unique class labelled as 72", the
Faster R-CNN achieved an AP of about 87%, resulting
in less accurate performance with respect to the buoy
detection. This could be caused by the presence of marine
organisms and dirt on the pipes that make the task more
challenging. However, results show the ability of the net-
work to correctly classify the OPIs despite different shape
and orientation of the digits, as well as high variability of
the surrounding environment. In Figure 5 some examples
of prediction for the digit class are shown. Furthermore, as
shown in Figure 6, the color correction process yields to an
improvement of the object detection performance, raising
the intersection over union value from 62.9% to 74.2%.

3.8 Class 4: red markers

The network obtained a class AP of about 92% on the
detection and classification of the red markers of class 4.
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(a)

(c) Class 2 digit ”3”

(d) Class 2 digit 74”

Fig. 5. Examples of network prediction on digits.

Fig. 6. Comparison between predicted bounding boxes in
original (left) and corrected (right) images containing
class_2 OPIs.

Furthermore, Figure 7 shows that the solution is able to
detect the OPIs even if their area varies considerably and
they are partially out of the field of view of the camera
in most of the images used for the fine-tuning procedure.
Results on the detection of red markers show that the
network achieved smaller AP values with respect to buoys
detection. Probably due to the limited number of images
(80) present in the dataset for this class.

Fig. 7. Examples of prediction on class_4 samples.

3.4 Class 5: no OPIs

At last, some tests were carried out exploiting images
without any OPIs, aiming at quantifying the occurrence
of False Positives (FPs). As aforementioned, the strategy
adopted was to distinguish this class of images by exclusion
among the others, i.e. an image is classified as belonging
to class_5 if the Faster R-CNN does not detect any OPL.
Thus, all the images belonging to class_5 provided by the
dataset were duplicated exploiting the color reconstruction
algorithm, described in Section 2.2, and were then applied
as input to the network. As a result, we have obtained
an overall accuracy of about 86% with 70 FPs predictions
over 504 samples, of which 46 produced by the 252 original
images, and 24 produced by the 252 color-corrected ones.
This means that by applying the color correction algorithm
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to the input images before performing the prediction, the
performance of the network improves. Therefore, comput-
ing the accuracy on just the corrected images, it increases
from 82% to 90%. Figure 8 demonstrates how the net-
work output changes if the input image were previously
corrected, thus avoiding a false positive detection.

Fig. 8. Example of how the color correction algorithm
allows to avoid a false positive OPI in underwater
images.

4. CONCLUSION & FUTURE WORKS

This paper proposes an algorithm that exploits Al-based
computer vision techniques together with physical and
geometrical characteristics of target objects to detect and
classify OPIs in underwater environment. Due to the chal-
lenges faced by underwater cameras, the acquired images
are firstly processed using color restoration and color en-
hancement methods with the goal of compensate the qual-
ity degradation. The color-reconstructed images are then
applied as input to a detection and classification algorithm
that employs deep-learning methods, as well as color and
shape based techniques to recognise and correctly label the
detected OPI. Preliminary results about the implemented
Faster R-CNN show that the network achieves a class AP
of about 98%, 87%, and 92% in detecting buoys, digits
and red markers, respectively. Hence, yielding to a mAP
over all the classes of about 92%. Tests performed on
both color-processed and original images shown that color
restoration and color enhancement are effective methods
capable of increasing the detection accuracy and decrease
the amount of occurring false positive.

Future works will focus on assessing the performance of
the entire presented algorithm and on the development of
real-time detection and classification capability. Moreover,
other networks (e.g. belonging to YOLO-family) will be
tested and the results compared with the one obtained for
the Faster R-CNN. Since results showed that color pro-
cessing could be used to improve the classification perfor-
mance, the development of a refined and computationally
efficient color reconstruction method will be considered.

It is worth mentioning that the described algorithm was
submitted by Universita di Pisa to the 1st Marine Cascade
Campaign: the virtual edition of the RAMI competition
(METRICS (2022)), achieving the second place. !
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