119 research outputs found

    An Association of Vitamins A and E with Hyaluronic and Lactobionic Acids may Prevent Molecular Changes Associated with Keratocyte to Myofibroblast Transition

    Get PDF
    Inflammatory events in the corneal stroma may activate keratocytes and trigger their transition towards myofibroblasts, which now produce different extracellular matrix (ECM) proteins thus causing corneal opacification.Corneal haze is a frequent side effect after photorefractive keratectomy (PRK) to correct high myopia.Currently, a preventive treatment with mitomycin-c can be used to limit the occurrence of this phenomenon. However, mitomycin-c is a toxic drug, not devoid of side effects, which may occasionally involve the corneal endothelium. Therefore, we have searched for a less risky, natural way, to prevent keratocytes transition. To this purpose, we have used as markers of the phenotype switch the proteins lumican (highly expressed by keratocytes and much less by myofibroblasts) and smooth muscle actin (αSMA) (highly expressed by myofibroblasts and poorly found in keratocytes), beside Fibronectin (Fn), the expression of which is also increased by transforming growth factor-beta (TGFβ treatment. Treatment of human keratocytes with TGFβ was used to induce the protein shift. Among different possible candidates, we have found that vitamins A and E, hyaluronic and lactobionic acids may prevent, either alone, or much better in association, the shift in the ratio between lumican and αSMA and the increased Fn expression. In conclusion, it could be speculated that topic treatment of the ocular surface with an association of these four compounds could be able to prevent or at least limit the occurrence of post-PRK corneal haze, with the additional advantage of lubrication, hydration and antioxidant defense exerted by these molecules

    Efficacy of fatty acids dietary supplement in polyethylene glycol-induced mouse model of retinal degeneration

    Get PDF
    Current knowledge of the benefits of nutrition supplements for eye pathologies is based largely on the use of appropriate animal models, together with defined dietary supplementation. Here, C57BL6 mice were subretinally injected with polyethylene glycol (PEG)-400, an established model of retinal degeneration with a dry age-related macular degeneration (AMD)-like phenotype, an eye pathology that lacks treatment. In response to PEG-400, markers of the complement system, angiogenesis,inflammation,gliosis,andmacrophageinfiltrationwereupregulatedinbothretinasand retinal pigment epithelium (RPE)/choroids, whereas dietary supplementation with a mixture based on fatty acids counteracted their upregulation. Major effects include a reduction of inflammation, in both retinas and RPE/choroids, and an inhibition of macrophage infiltration in the choroid, yet not in the retina, suggesting a targeted action through the choroidal vasculature. Histological analysis revealed a thinning of the outer nuclear layer (ONL), together with dysregulation of the epithelium layer in response to PEG-400. In addition, immunohistofluorescence demonstrated Müller cell gliosis and macrophage infiltration into subretinal tissues supporting the molecular findings. Reduced ONL thickness,gliosis,andmacrophageinfiltrationwerecounteractedbythedietsupplement. The present data suggest that fatty acids may represent a useful form of diet supplementation to prevent or limit the progression of dry AMD

    Raman Microspectroscopy Analysis in the Treatment of Acanthamoeba Keratitis

    Get PDF
    Acanthamoeba keratitis is a rare but serious corneal disease, often observed in contact lens wearers. Clinical treatment of infected patients frequently involves the use of polyhexamethylene biguanide (PHMB), a polymer used as a disinfectant and antiseptic, which is toxic also for the epithelial cells of the cornea. Prompt and effective diagnostic tools are hence highly desiderable for both starting early therapy and timely suspension of the treatment. In this work we use Raman microspectroscopy to analyse in vitro a single Acanthamoeba cell in cystic phase. In particular, we investigate the effect of PHMB at the single-cell level, providing useful information on both the underlying biochemical mechanism and the time frame for Acanthamoeba eradication in ocular infections. Furthermore, we demonstrate that Raman spectroscopy, in conjunction with standard multivariate analysis methods, allows discriminating between live and dead Acanthamoebas, which is fundamental to optimizing patients' treatment

    Ocular involvement of sars-cov-2 in a polish cohort of covid-19-positive patients

    Get PDF
    The coronavirus SARS-CoV-2 responsible for the current human COVID-19 pandemic has shown tropism toward different organs with variable efficiency, eyes included. The purpose of this study has been to investigate the presence of detectable SARS-CoV-2 infection in ocular swabs in patients affected by COVID-19. A consecutive series of 74 COVID-19-positive patients (age 21–89) were enrolled at two Polish COVID-19 hospitals for 4 months and were characterized by PCR for the presence of the SARS-CoV-2 genetic material in nasopharyngeal (NP) and ocular swabs, while their respiratory and ocular symptoms were noted. Almost 50% of them presented with severe/crit-ical respiratory involvement, and some degree of eye disease. No tight correlation was observed between the presence of ocular and respiratory symptoms. Three male patients presenting with severe/critical lung disease tested positive in ocular swab, however with mild/moderate ocular symptoms. In conclusion, our study lends further support to the view that overt ocular infection by the SARS-CoV-2 virus is not such a frequent occurrence

    Pathogen- and Host-Directed Antileishmanial Effects Mediated by Polyhexanide (PHMB)

    Get PDF
    BACKGROUND:Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. METHODOLOGY/PRINCIPAL FINDINGS:Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. CONCLUSIONS:Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators

    Fluctuations of the total entropy production in stochastic systems

    Get PDF
    Fluctuations of the excess heat in an out of equilibrium steady state are experimentally investigated in two stochastic systems : an electric circuit with an imposed mean current and a harmonic oscillator driven out of equilibrium by a periodic torque. In these two linear systems, we study excess heat that represents the difference between the dissipated heat out of equilibrium and the dissipated heat at equilibrium. Fluctuation theorem holds for the excess heat in the two experimental systems for all observation times and for all fluctuation magnitudes.Comment: 6

    RET PLCγ Phosphotyrosine Binding Domain Regulates Ca2+ Signaling and Neocortical Neuronal Migration

    Get PDF
    The receptor tyrosine kinase RET plays an essential role during embryogenesis in regulating cell proliferation, differentiation, and migration. Upon glial cell line-derived neurotrophic factor (GDNF) stimulation, RET can trigger multiple intracellular signaling pathways that in concert activate various downstream effectors. Here we report that the RET receptor induces calcium (Ca2+) signaling and regulates neocortical neuronal progenitor migration through the Phospholipase-C gamma (PLCγ) binding domain Tyr1015. This signaling cascade releases Ca2+ from the endoplasmic reticulum through the inositol 1,4,5-trisphosphate receptor and stimulates phosphorylation of ERK1/2 and CaMKII. A point mutation at Tyr1015 on RET or small interfering RNA gene silencing of PLCγ block the GDNF-induced signaling cascade. Delivery of the RET mutation to neuronal progenitors in the embryonic ventricular zone using in utero electroporation reveal that Tyr1015 is necessary for GDNF-stimulated migration of neurons to the cortical plate. These findings demonstrate a novel RET mediated signaling pathway that elevates cytosolic Ca2+ and modulates neuronal migration in the developing neocortex through the PLCγ binding domain Tyr1015
    corecore