39 research outputs found

    High Spatial Resolution of the Mid-Infrared Emission of Compton-Thick Seyfert 2 Galaxy Mrk3

    Get PDF
    Mid-infrared (MIR) spectra observed with Gemini/Michelle were used to study the nuclear region of the Compton-thick Seyfert 2 (Sy 2) galaxy Mrk 3 at a spatial resolution of ∼\sim200 pc. No polycyclic aromatic hydrocarbons (PAHs) emission bands were detected in the N-band spectrum of Mrk 3. However, intense [Ar III] 8.99 μ\mum, [S IV] 10.5 μ\mum and [Ne II] 12.8 μ\mum ionic emission-lines, as well as silicate absorption feature at 9.7μ\mum have been found in the nuclear extraction (∼\sim200 pc). We also present subarcsecond-resolution Michelle N-band image of Mrk 3 which resolves its circumnuclear region. This diffuse MIR emission shows up as a wings towards East-West direction closely aligned with the S-shaped of the Narrow Line Region (NLR) observed at optical [O III]λ\lambda5007\AA image with Hubble/FOC. The nuclear continuum spectrum can be well represented by a theoretical torus spectral energy distribution (SED), suggesting that the nucleus of Mrk 3 may host a dusty toroidal structure predicted by the unified model of active galactic nucleus (AGN). In addition, the hydrogen column density (NH = 4.8−3.1+3.3× 1023_H\,=\,4.8^{+3.3}_{-3.1}\times\,10^{23} cm−2^{-2}) estimated with a torus model for Mrk 3 is consistent with the value derived from X-ray spectroscopy. The torus model geometry of Mrk 3 is similar to that of NGC 3281, both Compton-thick galaxies, confirmed through fitting the 9.7μ\mum silicate band profile. This results might provide further evidence that the silicate-rich dust can be associated with the AGN torus and may also be responsible for the absorption observed at X-ray wavelengths in those galaxies.Comment: 11 pages, 6 figure

    The XDSPRES CL-based package for reducing OSIRIS cross-dispersed spectra

    Full text link
    We present a description of the CL-based package XDSPRES, which aims at being a complete reducing facility for cross-dispersed spectra taken with the Ohio State Infrared Imager/Spectrometer, as installed at the SOAR telescope. This instrument provides spectra in the range between 1.2um and 2.35um in a single exposure, with resolving power of R ~ 1200. XDSPRES consists of two tasks, namely xdflat and doosiris. The former is a completely automated code for preparing normalized flat field images from raw flat field exposures. Doosiris was designed to be a complete reduction pipeline, requiring a minimum of user interaction. General steps towards a fully reduced spectrum are explained, as well as the approach adopted by our code. The software is available to the community through the web site http://www.if.ufrgs.br/~ruschel/software.Comment: 14 pages, 10 figure

    The stellar spectral features of nearby galaxies in the near infrared: tracers of thermally pulsing asymptotic giant branch stars?

    Get PDF
    et al.We analyse the stellar absorption features in high signal-to-noise ratio (S/N) near-infrared (NIR) spectra of the nuclear region of 12 nearby galaxies, mostly spirals. The features detected in some or all of the galaxies in this sample are the TiO (0.843 and 0.886 μm), VO (1.048 μm), CN (1.1 and 1.4 μm), H2O (1.4 and 1.9 μm) and CO (1.6 and 2.3 μm) bands. The C2 (1.17 and 1.76 μm) bands are generally weak or absent, although C2 (1.76 μm) may be weakly present in the mean galaxy spectrum. A deep feature near 0.93 μm, likely caused by CN, TiO and/or ZrO, is also detected in all objects. Fitting a combination of stellar spectra to the mean spectrum shows that the absorption features are produced by evolved stars: cool giants and supergiant stars in the early- or thermally pulsing asymptotic giant branch (E-AGB or TP-AGB) phases. The high luminosity of TP-AGB stars, and the appearance of VO and ZrO features in the data, suggest that TP-AGB stars dominate these spectral features. However, a contribution from other evolved stars is also likely. Comparison with evolutionary population synthesis models shows that models based on empirical libraries that predict relatively strong NIR features provide a more accurate description of the data. However, none of the models tested accurately reproduces all of the features observed in the spectra. To do so, the models will need to not only improve the treatment of TP-AGB stars, but also include good quality spectra of red giant and E-AGB stars. The uninterrupted wavelength coverage, high S/N and quantity of features we present here will provide a benchmark for the next generation of models aiming to explain and predict the NIR properties of galaxies.The Brazilian authors thank CNPq and FAPERGS support. LCH acknowledges support by the Chinese Academy of Science through grant no. XDB09030102 (Emergence of Cosmological Structures) from the Strategic Priority Research Program and by the National Natural Science Foundation of China through grant No. 11473002. CRA is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (PIEF-GA-2012-327934).Peer Reviewe

    VVV-WIT-04: An extragalactic variable source caught by the VVV Survey

    Get PDF
    We report the discovery of VVV-WIT-04, a near-infrared variable source towards the Galactic disk located ~0.2 arcsec apart from the position of the radio source PMN J1515-5559. The object was found serendipitously in the near-IR data of the ESO public survey VISTA Variables in the V\'ia L\'actea (VVV). Our analysis is based on variability, multicolor, and proper motion data from VVV and VVV eXtended surveys, complemented with archive data at longer wavelengths. We suggest that VVV-WIT-04 has an extragalactic origin as the near-IR counterpart of PMN J1515-5559. The Ks-band light-curve of VVV-WIT-04 is highly variable and consistent with that of an Optically Violent Variable (OVV) quasar. The variability in the near-IR can be interpreted as the redshifted optical variability. Residuals to the proper motion varies with the magnitude suggesting contamination by a blended source. Alternative scenarios, including a transient event such as a nova or supernova, or even a binary microlensing event are not in agreement with the available data.R.K.S. acknowledges support from CNPq/Brazil through projects 308968/2016-6 and 421687/2016-9. P.W.L. is supported by STFC Consolidated Grant ST/R000905/1. Support for the authors is provided by the BASAL CONICYT Center for Astrophysics and Associated Technologies (CATA) through grant AFB-170002, and the Ministry for the Economy, Development, and Tourism, Programa Iniciativa Cient´ıfica Milenio through grant IC120009, awarded to the Millennium Institute of Astrophysics (MAS). D.M. acknowledges support from FONDECYT through project Regular #1170121

    Clues from Spitzer/IRS spectra on the Compton thickness and the existence of the dusty torus

    Get PDF
    [Context]: Most of the optically classified low-ionisation, narrow emission-line regions (LINERs) nuclei host an active galactic nucleus (AGN). However, how they fit into the unified model (UM) of AGN is still an open question. [Aims]: The aims of this work are to study at mid-infrared (mid-IR) (1) the Compton-thick nature of LINERs (i.e. hydrogen column densities of NH> 1.5 × 1024 cm-2) and (2) the disappearance of the dusty torus in LINERs predicted from theoretical arguments. [Methods]: We have compiled all the available low spectral-resolution, mid-IR spectra of LINERs from the InfraRed Spectrograph (IRS) onboard Spitzer. The sample contains 40 LINERs. We have complemented the LINER sample with Spitzer/IRS spectra of PGQSOs, Type-1 Seyferts (S1s), Type-2 Seyferts (S2s), and StarBurst (SB) nuclei. We studied the AGN compared to the starburst content in our sample using different indicators: the equivalent width of the polycyclic aromatic hydrocarbon at 6.2 μm, the strength of the silicate feature at 9.7 μm, and the steepness of the mid-IR spectra. We classified the spectra as SB-dominated and AGN-dominated, according to these diagnostics and compared the average mid-IR spectra of the various classes. Moreover, we studied the correlation between the 12 μm luminosity, νLν(12 μm), and the 2−10 keV energy band X-ray luminosity, LX(2−10 keV). [Results]: In 25 out of the 40 LINERs (i.e. 62.5%), the mid-IR spectra are not SB-dominated, similar to the comparison S2 sample (67.7%). The average spectra of both SB-dominated LINERs and S2s are very similar to the average spectrum of the SB class. The average spectrum of AGN-dominated LINERs is different from the average spectra of the other optical classes, showing a rather flat spectrum at 6-28 μm. We find that the average spectrum of AGN-dominated LINERs with X-ray luminosities LX(2−10 keV) > 1041 erg/s is similar to the average mid-IR spectrum of AGN-dominated S2s. However, faint LINERs (i.e. LX(2−10 keV) < 1041 erg/s) show flat spectra different from any of the other optical classes. The correlation between νLν(12 μm) and LX(2−10 keV) for AGN nicely extends towards low luminosities only if SB-dominated LINERs are excluded and if the 2−10 keV band X-ray luminosity is corrected in Compton-thick LINER candidates. [Conclusions]: We find that LINERs proposed as Compton-thick candidates at X-ray wavelengths may be confirmed according to the X-ray to mid-IR luminosity relation. We show evidence that the dusty-torus disappear when their bolometric luminosity is below Lbol ≃ 1042 erg/s. We suggest that the dominant emission at mid-IR of faint LINERs might be a combination of an elliptical galaxy host (characterised by the lack of gas), a starburst, a jet, and/or ADAF emission. Alternatively, the mid-IR emission of some of these faint LINERs could be a combination of elliptical galaxy plus carbon-rich planetary nebulae. To reconcile the Compton-thick nature of a large number of LINERs without dusty-torus signatures, we suggest that the material producing the Compton-thick X-ray obscuration is free of dust.This research has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under the grant (project refs. AYA2013-42227-P, AYA 2012-39168-C03-01, and AYA 2010-15169) and by La Junta de Andalucia (TIC 114). AAH acknowledges support from grant AYA2012-31447. D.D. acknowledges support from grant 107313 from PAPIIT, UNAM. C.R.A. is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (PIEF-GA-2012-327934).Peer Reviewe

    Mapping the stellar population and gas excitation of MaNGA galaxies with MEGACUBES. Results for AGN versus control sample

    Full text link
    We present spaxel-by-spaxel stellar population fits for the ∼\sim10 thousand MaNGA datacubes. We provide multiple extension fits files, nominated as MEGACUBES, with maps of several properties as well as emission-line profiles that are provided for each spaxel. All the MEGACUBES are available through a web interface (https://manga.linea.org.br/ or http://www.if.ufrgs.br/~riffel/software/megacubes/). We also defined a final Active Galactic Nuclei (AGN) sample, as well as a control sample matching the AGN host galaxy properties. We have analysed the stellar populations and spatially resolved emission-line diagnostic diagrams of these AGNs and compared them with the control galaxies sample. We find that the relative fractions of young (t≤t \leq 56 Myr) and intermediate-age (100 Myr ≤t≤\leq t \leq 2 Gyr) show predominantly a positive gradient for both AGNs and controls. The relative fraction of intermediate-age stellar population is higher in AGN hosts when compared to the control sample, and this difference becomes larger for higher [O III] luminosity AGNs. We attribute this to the fact that extra gas is available in these more luminous sources and that it most likely originates from mass-loss from the intermediate-age stars. The spatially resolved diagnostic diagrams reveal that the AGN emission is concentrated in the inner 0.5 ReR_e (effective radius) region of the galaxies, showing that the AGN classification is aperture dependent and that emission-line ratios have to be taken together with the Hα\alpha equivalent width for proper activity classification. We present a composite "BPT+WHAN" diagram that produces a more comprehensive mapping of the gas excitation.Comment: Accepted for publication in MNRA
    corecore