5 research outputs found
Hydrogenation on palladium nanoparticles supported by graphene nanoplatelets
Pd nanoparticles (1 wt %; mean size âŒ4 nm) were supported on âŒ2 ÎŒm sized, but few nanometers thick, graphene nanoplatelets (GNPs) and compared to 1 wt % Pd on activated carbon or Îł-alumina. Catalyst morphology, specific surface area, and Pd particle size were characterized by SEM, BET, and TEM, respectively. H2-TPD indicated that GNPs intercalated hydrogen, which may provide additional H2 supply to the Pd nanoparticles during C2H4 hydrogenation. Whereas the two types of Pd/GNPs (NaOH vs calcinated) catalysts were less active than Pd/C and Pd/Al2O3 below 40 °C, at 55 °C they were about 3â4 times more active. As for example Pd/GNPs (NaOH) and Pd/Al2O3 exhibited not too different mean Pd particle size (3.7 vs 2.5 nm, respectively), the higher activity is attributed to the additional hydrogen supply likely by the metal/support interface, as suggested by the varying C2H4 and H2 orders on the different supports. Operando XANES measurements during C2H4 hydrogenation revealed the presence of Pd hydride. The Pd hydride was more stable for Pd/GNPs (NaOH) than for Pd/C, once more pointing to a better hydrogen supply by graphene nanoplatelets
Ligand migration from cluster to support: a crucial factor for catalysis by Thiolate-protected gold clusters
Thiolate
protected
metal
clusters
are valuable
precursors
for the
design
of tailored
nanosized
catalysts.
Their
performance
can
be tuned
precisely
at atomic
level,
e.g. by the configuration/
type
of ligands
or by partial/complete
removal
of the ligand
shell
through
controlled
pre-treatment
steps.
However,
the
interaction
between
the ligand
shell
and
the oxide
support,
as
well
as ligand
removal
by oxidative
pre-treatment,
are
still
poorly
understood.
Typically,
it was
assumed
that
the thiolate
ligands
are simply
converted
into
SO
2
, CO
2
and
H
2
O. Herein,
we
report
the first
detailed
observation
of sulfur
ligand
migration
from
Au to the oxide
support
upon
deposition
and
oxidative
pre-treatment,
employing
mainly
S K-edge
XANES.
Conse-
quently,
thiolate
ligand
migration
not only
produces
clean
Au
cluster
surfaces
but
also
the
surrounding
oxide
support
is
modified
by sulfur-containing
species,
with
pronounced
effects
on catalytic
propertiesPeer ReviewedPostprint (published version
The dynamic structure of Au38(SR)24 nanoclusters supported on CeO2 upon pretreatment and CO oxidation
Atomically precise thiolate protected Au nanoclusters Au38(SC2H4Ph)24 on CeO2 were used for in-situ (operando) extended X-ray absorption fine structure/diffuse reflectance infrared fourier transform spectroscopy and ex situ scanning transmission electron microscopyâhigh-angle annular dark-field imaging/X-ray photoelectron spectroscopy studies monitoring cluster structure changes induced by activation (ligand removal) and CO oxidation. Oxidative pretreatment at 150 °C âcollapsedâ the clustersâ ligand shell, oxidizing the hydrocarbon backbone, but the S remaining on Au acted as poison. Oxidation at 250 °C produced bare Au surfaces by removing S which migrated to the support (forming Au+-S), leading to highest activity. During reaction, structural changes occurred via CO-induced Au and O-induced S migration to the support. The results reveal the dynamics of nanocluster catalysts and the underlying cluster chemistry.Peer ReviewedPostprint (author's final draft
Ligand and support effects on the reactivity and stability of Au38(SR)24 catalysts in oxidation reactions
Thiolate protected metal nanoclusters are emerging materials for the preparation of atomically defined heterogeneous catalysts. Recently it was revealed that the ligands migrated to the support upon cluster deposition, which influences the catalytic behaviour. Here we examined the role of the protecting thiolate ligands on the cyclohexane oxidation for Au38(SR)24 supported on CeO2 and Al2O3. Sulfur containing products were detected. XANES S K-edge measurements revealed SOx species on the support during the reaction. The results indicate (i) an active and complex role of the thiolate ligand and (ii) changes of cluster (surface) structure, depending on support material and reaction conditions
Ligand migration from cluster to support: a crucial factor for catalysis by Thiolate-protected gold clusters
Thiolate
protected
metal
clusters
are valuable
precursors
for the
design
of tailored
nanosized
catalysts.
Their
performance
can
be tuned
precisely
at atomic
level,
e.g. by the configuration/
type
of ligands
or by partial/complete
removal
of the ligand
shell
through
controlled
pre-treatment
steps.
However,
the
interaction
between
the ligand
shell
and
the oxide
support,
as
well
as ligand
removal
by oxidative
pre-treatment,
are
still
poorly
understood.
Typically,
it was
assumed
that
the thiolate
ligands
are simply
converted
into
SO
2
, CO
2
and
H
2
O. Herein,
we
report
the first
detailed
observation
of sulfur
ligand
migration
from
Au to the oxide
support
upon
deposition
and
oxidative
pre-treatment,
employing
mainly
S K-edge
XANES.
Conse-
quently,
thiolate
ligand
migration
not only
produces
clean
Au
cluster
surfaces
but
also
the
surrounding
oxide
support
is
modified
by sulfur-containing
species,
with
pronounced
effects
on catalytic
propertiesPeer Reviewe