24 research outputs found

    Synthesizing Stellar Populations in South Pole Telescope Galaxy Clusters. I. Ages of Quiescent Member Galaxies at 0.3 < z < 1.4

    Get PDF
    Using stellar population synthesis models to infer star formation histories (SFHs), we analyze photometry and spectroscopy of a large sample of quiescent galaxies that are members of Sunyaev–Zel'dovich (SZ)-selected galaxy clusters across a wide range of redshifts. We calculate stellar masses and mass-weighted ages for 837 quiescent cluster members at 0.3 < z < 1.4 using rest-frame optical spectra and the Python-based Prospector framework, from 61 clusters in the SPT-GMOS Spectroscopic Survey (0.3 < z < 0.9) and three clusters in the SPT Hi-z cluster sample (1.25 < z < 1.4). We analyze spectra of subpopulations divided into bins of redshift, stellar mass, cluster mass, and velocity-radius phase-space location, as well as by creating composite spectra of quiescent member galaxies. We find that quiescent galaxies in our data set sample a diversity of SFHs, with a median formation redshift (corresponding to the lookback time from the redshift of observation to when a galaxy forms 50% of its mass, t50) of z = 2.8 ± 0.5, which is similar to or marginally higher than that of massive quiescent field and cluster galaxy studies. We also report median age–stellar mass relations for the full sample (age of the universe at t50 (Gyr) = 2.52 (±0.04)–1.66 (±0.12) log10(M/1011M⊙)) and recover downsizing trends across stellar mass; we find that massive galaxies in our cluster sample form on aggregate ∼0.75 Gyr earlier than lower-mass galaxies. We also find marginally steeper age–mass relations at high redshifts, and report a bigger difference in formation redshifts across stellar mass for fixed environment, relative to formation redshifts across environment for fixed stellar mass

    Cosmologie via les observations d'amas de galaxies par effet Sunyaev-Zel'dovich avec NIKA2

    No full text
    The mass distribution in the Universe, as traced by galaxy clusters is a powerful cosmological probe. The characterization of the processes associated with the origin and the growth of the large scale structures enables constraining cosmological parameters by studying the distribution of clusters according to their mass and redshift. However, a tension is observed between the cosmological constraints established by the study of the primary anisotropies of the cosmological background and those resulting from the analysis of the distribution of galaxy clusters. This may imply that our cosmological model is incomplete. The observation of clusters from the Sunyaev-Zel'dovich (SZ) effect allows us to constrain their gas pressure. This observable can be directly linked to the mass of galaxy clusters via a scaling relation and a pressure profile. It is thus essential to characterize the latter precisely in order to limit the potential bias and systematic effects affecting cosmological analyses. This thesis presents the work carried out to this end. It covers topics ranging from SZ observations made with the NIKA2 camera installed at the IRAM 30-metre telescope to the estimation of cosmological parameters, and including the analysis of NIKA2 raw data and the SZ maps produced.Part of the thesis work presented in this document is dedicated to the study and the improvement of the different tasks carried out, from the observations of galaxy clusters with the NIKA2 camera to the production of maps of the SZ effect. The procedures developed to estimate the NIKA2 instrumental performance are detailed and the analysis pipeline used to analyze the raw data is presented.The work carried out in this thesis also consisted in characterizing the thermodynamic properties of galaxy clusters using joint analyzes that combine the NIKA2 SZ maps with X-ray data measured by the XMM-Newton satellite. We detail the methods used in the SZ data processing software created for the NIKA2 SZ large program, the non-parametric deprojection procedure developed to characterize the pressure profile of galaxy clusters and the results of the first SZ observation with NIKA2.The last activities presented are dedicated to the analyses carried out to quantify the impact of the NIKA2 SZ large program on cosmology. We analyze the effect of dynamic disturbances of the intracluster medium on the characterization of the pressure profile with NIKA2 via the use of clusters from the MUSIC N-body simulation. Finally, we detail the study realized in order to estimate the impact of a modification of the universal pressure profile on the estimation of cosmological parameters derived from the power spectrum of the SZ effect measured by Planck.La distribution de masse dans l'Univers telle que tracée par les amas de galaxies constitue une sonde cosmologique puissante. La caractérisation des processus associés à l'origine et à la croissance des grandes structures permet de contraindre des paramètres cosmologiques via l'étude de la distribution des amas en fonction de leur masse et de leur redshift. Cependant, il existe un désaccord statistiquement significatif observé entre les contraintes cosmologiques établies par l'étude des anisotropies primaires du fond diffus cosmologique et celles issues de l'analyse de la distribution des amas de galaxies. Cela pourrait signifier que le modèle standard de la cosmologie est incomplet. L'une des méthodes d'observation des amas de galaxie exploite l'effet Sunyaev-Zel'dovich (SZ) qui permet de contraindre la pression du gaz contenu dans ces derniers. Cette observable peut être directement liée à la masse des amas via une relation d'échelle et un profil de pression. Il est donc essentiel de caractériser précisément ces derniers afin de limiter les potentiels biais et effets systématiques affectant les analyses cosmologiques. Cette thèse présente l'ensemble des travaux réalisés dans cet objectif. Elle porte sur des thématiques allant des observations SZ effectuées avec la caméra NIKA2 installée au télescope de 30 mètres de l’IRAM jusqu'à l'estimation des paramètres cosmologiques en passant par l'analyse des données brutes de NIKA2 et des cartes SZ réalisées.Une part du travail de thèse présenté dans ce document est consacrée à l'étude et l’amélioration des différentes étapes effectuées, depuis les observations d'amas de galaxies au télescope avec la caméra NIKA2 jusqu'à la production de cartes de l'effet SZ. Les procédures développées pour estimer les performances instrumentales de NIKA2 sont détaillées et la chaîne d'analyse utilisée pour réduire les données brutes est présentée.Les travaux réalisés dans cette thèse ont également consisté à caractériser les propriétés thermodynamiques d'amas de galaxies via des analyses jointes combinant les cartes SZ NIKA2 avec des données X mesurées par le satellite XMM-Newton. Nous détaillons les méthodes employées dans le logiciel de traitement des données SZ créé pour le grand programme SZ de NIKA2, la procédure de déprojection non-paramétrique développée pour caractériser le profil de pression des amas de galaxies et les résultats de la première observation SZ avec NIKA2.Les dernières activités présentées sont dédiées aux analyses réalisées afin de quantifier l'impact du grand programme SZ de NIKA2 sur la cosmologie. Nous analysons l'effet des perturbations dynamiques du milieu intra-amas sur la caractérisation du profil de pression avec NIKA2 via l'utilisation d'amas de la simulation numérique MUSIC. Finalement, nous détaillons l'étude permettant d'estimer l'impact d'une variation du profil de pression universel sur l'estimation des paramètres cosmologiques déduite du spectre de puissance de l'effet SZ mesuré par Planck

    Cosmology from Sunyaev-Zel’dovich observations of galaxy clusters with the NIKA2

    No full text
    La distribution de masse dans l'Univers telle que tracée par les amas de galaxies constitue une sonde cosmologique puissante. La caractérisation des processus associés à l'origine et à la croissance des grandes structures permet de contraindre des paramètres cosmologiques via l'étude de la distribution des amas en fonction de leur masse et de leur redshift. Cependant, il existe un désaccord statistiquement significatif observé entre les contraintes cosmologiques établies par l'étude des anisotropies primaires du fond diffus cosmologique et celles issues de l'analyse de la distribution des amas de galaxies. Cela pourrait signifier que le modèle standard de la cosmologie est incomplet. L'une des méthodes d'observation des amas de galaxie exploite l'effet Sunyaev-Zel'dovich (SZ) qui permet de contraindre la pression du gaz contenu dans ces derniers. Cette observable peut être directement liée à la masse des amas via une relation d'échelle et un profil de pression. Il est donc essentiel de caractériser précisément ces derniers afin de limiter les potentiels biais et effets systématiques affectant les analyses cosmologiques. Cette thèse présente l'ensemble des travaux réalisés dans cet objectif. Elle porte sur des thématiques allant des observations SZ effectuées avec la caméra NIKA2 installée au télescope de 30 mètres de l’IRAM jusqu'à l'estimation des paramètres cosmologiques en passant par l'analyse des données brutes de NIKA2 et des cartes SZ réalisées.Une part du travail de thèse présenté dans ce document est consacrée à l'étude et l’amélioration des différentes étapes effectuées, depuis les observations d'amas de galaxies au télescope avec la caméra NIKA2 jusqu'à la production de cartes de l'effet SZ. Les procédures développées pour estimer les performances instrumentales de NIKA2 sont détaillées et la chaîne d'analyse utilisée pour réduire les données brutes est présentée.Les travaux réalisés dans cette thèse ont également consisté à caractériser les propriétés thermodynamiques d'amas de galaxies via des analyses jointes combinant les cartes SZ NIKA2 avec des données X mesurées par le satellite XMM-Newton. Nous détaillons les méthodes employées dans le logiciel de traitement des données SZ créé pour le grand programme SZ de NIKA2, la procédure de déprojection non-paramétrique développée pour caractériser le profil de pression des amas de galaxies et les résultats de la première observation SZ avec NIKA2.Les dernières activités présentées sont dédiées aux analyses réalisées afin de quantifier l'impact du grand programme SZ de NIKA2 sur la cosmologie. Nous analysons l'effet des perturbations dynamiques du milieu intra-amas sur la caractérisation du profil de pression avec NIKA2 via l'utilisation d'amas de la simulation numérique MUSIC. Finalement, nous détaillons l'étude permettant d'estimer l'impact d'une variation du profil de pression universel sur l'estimation des paramètres cosmologiques déduite du spectre de puissance de l'effet SZ mesuré par Planck.The mass distribution in the Universe, as traced by galaxy clusters is a powerful cosmological probe. The characterization of the processes associated with the origin and the growth of the large scale structures enables constraining cosmological parameters by studying the distribution of clusters according to their mass and redshift. However, a tension is observed between the cosmological constraints established by the study of the primary anisotropies of the cosmological background and those resulting from the analysis of the distribution of galaxy clusters. This may imply that our cosmological model is incomplete. The observation of clusters from the Sunyaev-Zel'dovich (SZ) effect allows us to constrain their gas pressure. This observable can be directly linked to the mass of galaxy clusters via a scaling relation and a pressure profile. It is thus essential to characterize the latter precisely in order to limit the potential bias and systematic effects affecting cosmological analyses. This thesis presents the work carried out to this end. It covers topics ranging from SZ observations made with the NIKA2 camera installed at the IRAM 30-metre telescope to the estimation of cosmological parameters, and including the analysis of NIKA2 raw data and the SZ maps produced.Part of the thesis work presented in this document is dedicated to the study and the improvement of the different tasks carried out, from the observations of galaxy clusters with the NIKA2 camera to the production of maps of the SZ effect. The procedures developed to estimate the NIKA2 instrumental performance are detailed and the analysis pipeline used to analyze the raw data is presented.The work carried out in this thesis also consisted in characterizing the thermodynamic properties of galaxy clusters using joint analyzes that combine the NIKA2 SZ maps with X-ray data measured by the XMM-Newton satellite. We detail the methods used in the SZ data processing software created for the NIKA2 SZ large program, the non-parametric deprojection procedure developed to characterize the pressure profile of galaxy clusters and the results of the first SZ observation with NIKA2.The last activities presented are dedicated to the analyses carried out to quantify the impact of the NIKA2 SZ large program on cosmology. We analyze the effect of dynamic disturbances of the intracluster medium on the characterization of the pressure profile with NIKA2 via the use of clusters from the MUSIC N-body simulation. Finally, we detail the study realized in order to estimate the impact of a modification of the universal pressure profile on the estimation of cosmological parameters derived from the power spectrum of the SZ effect measured by Planck

    Unveiling the Merger Dynamics of the Most Massive MaDCoWS Cluster at z = 1.2 from a Multiwavelength Mapping of Its Intracluster Medium Properties

    No full text
    © 2020. The American Astronomical Society. All rights reserved The characterization of the Intracluster Medium (ICM) properties of high-redshift galaxy clusters is fundamental to our understanding of large-scale structure formation processes. We present the results of a multiwavelength analysis of the very massive cluster MOO J1142+1527 at a redshift z = 1.2 discovered as part of the Massive and Distant Clusters of WISE Survey. This analysis is based on high angular resolution Chandra X-ray and NIKA2 Sunyaev-Zel'dovich (SZ) data. The cluster thermodynamic radial profiles have been obtained with unprecedented precision at this redshift and up to 0.7R 500, thanks to the combination of high-resolution X-ray and SZ data. The comparison between the galaxy distribution mapped in infrared by Spitzer and the morphological properties of the ICM derived from the combined analysis of the Chandra and NIKA2 data leads us to the conclusion that the cluster is an ongoing merger. We have estimated a systematic uncertainty on the cluster total mass that characterizes both the impact of the observed deviations from spherical symmetry and of the core dynamics on the mass profile. We further combine the X-ray and SZ data at the pixel level to obtain maps of the temperature and entropy distributions. We find a relatively low-entropy core at the position of the X-ray peak and high-temperature regions located on its south and west sides. This work demonstrates that the addition of spatially resolved SZ observations to low signal-to-noise X-ray data brings a high information gain on the characterization of the evolution of ICM thermodynamic properties at z > 1

    PANCO2: A new software to measure pressure profiles from resolved thermal SZ observations

    No full text
    International audienceWe have developed a new software to perform the measurement of galaxy cluster pressure profiles from high angular resolution thermal SZ observations. The code allows the user to take into account various features of millimeter observations, such as point spread function (PSF) convolution, pipeline filtering, correlated residual noise, and point source contamination, in a forward modeling approach. A major advantage of this software is its performance, enabling the extraction of the pressure profile and associated confidence intervals via MCMC sampling in times as short as a few minutes. We present the code and its validation on various realistic synthetic maps, of ideal spherical clusters, as well as of realistic, hydrodynamically simulated objects. We plan to publicly release the software in the coming months

    Forecasting the Y500 – M500 scaling relation from the NIKA2 SZ Large Program

    No full text
    International audienceOne of the key elements needed to perform the cosmological exploitation of a cluster survey is the relation between the survey observable and the cluster masses. Among these observables, the integrated Compton parameter Y is a measurable quantity in Sunyaev-Zeldovich (SZ) surveys, which tightly correlates with cluster mass. The calibration of the relation between the Compton parameter Y500 and the mass M500 enclosed within radius R500 is one of the scientific goals of the NIKA2 SZ Large Program (LPSZ). We present an ongoing study to forecast the constraining power of this program, using mock simulated datasets that mimic the large program sample, selection function, and typical uncertainties on Y500 and M500. We use a Bayesian hierarchical modelling that enables taking into account a large panel of systematic effects. Our results show that the LPSZ can yield unbiased estimates of the scaling relation parameters for realistic input parameter values. The relative uncertainties on these parameters is ~ 10% for the intercept and slope of the scaling relation, and ~ 34% for its intrinsic scatter, foreshadowing precise estimates to be delivered by the LPSZ

    Galaxy clusters morphology with Zernike polynomials: the first application on Planck\textit{Planck} Compton parameter maps

    No full text
    International audienceThe study of the morphology of 2D projected maps of galaxy clusters is a suitable approach to infer, from real data, the dynamical state of those systems. We recently developed a new method to recover the morphological features in galaxy cluster maps which consists of an analytical modelling through the Zernike polynomials. After the first validation of this approach on a set of high-resolution mock maps of the Compton parameter, yy, from hydrodynamically simulated galaxy clusters in THE THREE HUNDRED project, we apply the Zernike modelling on yy-maps of local (z<0.1z < 0.1) galaxy clusters observed by the PlanckPlanck satellite. With a single parameter collecting the main information of the Zernike modelling, we classify their morphology. A set of mock PlanckPlanck-like yy-maps, generated from THE THREE HUNDRED clusters, is also used to validate our indicator with a proper dynamical state classification. This approach allows us to test the efficiency of the Zernike morphological modelling in evaluating the dynamical population in the real PlanckPlanck sample

    Morphological analysis of SZ and X-ray maps of galaxy clusters with Zernike polynomials

    No full text
    Several methods are used to evaluate, from observational data, the dynamical state of galaxy clusters. Among them, the morphological analysis of cluster images is well suited for this purpose. We report a new approach to the morphology, which consists in analytically modelling the images with a set of orthogonal functions, the Zernike polynomials (ZPs). We validated the method on mock high-resolution Compton parameter maps of synthetic galaxy clusters from Th

    Mass Estimation of Planck Galaxy Clusters using Deep Learning

    No full text
    Galaxy cluster masses can be inferred indirectly using measurements from X-ray band, Sunyaev-Zeldovich (SZ) effect signal or optical observations. Unfortunately, all of them are affected by some bias. Alternatively, we provide an independent estimation of the cluster masses from the Planck PSZ2 catalog of galaxy clusters using a machine-learning method. We train a Convolutional Neural Network (CNN) model with the mock SZ observations from Th

    Exploring the hydrostatic mass bias in MUSIC clusters: application to the NIKA2 mock sample

    No full text
    International audienceClusters of galaxies are useful tools to constrain cosmological parameters, only if their masses can be correctly inferred from observations. In particular, X-ray and Sunyaev–Zeldovich (SZ) effect observations can be used to derive masses within the framework of the hydrostatic equilibrium. Therefore, it is crucial to have a good control of the possible mass biases that can be introduced when this hypothesis is not valid. In this work, we analysed a set of 260 synthetic clusters from the MUSIC simulation project at redshifts 0 ≤ z ≤ 0.82. We estimate the hydrostatic mass of the MUSIC clusters from X-ray only (temperature and density) and from X-ray and SZ (density and pressure). Then, we compare them with the true 3D dynamical mass. The biases are of the order of 20 per cent. We find that using the temperature instead of the pressure leads to a smaller bias, although the two values are compatible within 1σ. Non-thermal contributions to the total pressure support, arising from bulk motion and turbulence of the gas, are also computed and show that they are sufficient to account for this bias. We also present a study of the correlation between the mass bias and the dynamical state of the clusters. A clear correlation is shown between the relaxation state of the clusters and the bias factor. We applied the same analysis on a subsample of 32 objects, already selected for supporting the NIKA2 SZ Large Program
    corecore