874 research outputs found
Novel structural features of the ripple phase of phospholipids
We have calculated the electron density maps of the ripple phase of
dimyristoylphosphatidylcholine (DMPC) and palmitoyl-oleoyl phosphatidylcholine
(POPC) multibilayers at different temperatures and fixed relative humidity. Our
analysis establishes, for the first time, the existence of an average tilt of
the hydrocarbon chains of the lipid molecules along the direction of the ripple
wave vector, which we believe is responsible for the occurrence of asymmetric
ripples in these systems
Recommended from our members
Stratigraphy of the Palo Duro Basin- A Status Report
Since the beginning of Bureau research into the Palo Duro Basin area in 1979, more than 150 geologic reports have been completed and published. Approximately 30 are currently in press. Because of continuing research in the area, however, a great deal of additional work still remains unpublished. This report provides an update on ongoing, as yet unpublished research into the stratigraphy of the Palo Duro Basin (fig. 1).
Although investigations on some scale are being carried out on essentially all of the stratigraphic horizons in the Palo Duro Basin area (fig. 2), only those units which have recently been the focus of relatively concentrated research efforts are reported herein. This necessarily includes those units being analyzed for hydrocarbon potential (Mississippian and Pennsylvanian Systems), those that are the focus of hydrologic studies (Permian Wolfcamp Series and Permo-Triassic Dockum Group and Dewey Lake Formation), and the proposed waste repository horizon (Permian San Andres Formation). Work on other stratigraphic units is of lower priority and is being carried out peripherally. Table 1 indicates researchers responsible for contributions to this report and those who are continuing to study various stratigraphic units in the area.Bureau of Economic Geolog
Pollinator Visitation Frequency Associated with Native and Non-native Plants in a Mid-Atlantic Piedmont (USA) Urban Garden
The recent focus on the importance of native plants and their pollinators has highlighted the critical role of local species in their natural environment. As urban encroachment, climate change, and invasive species continues to threaten native habitats, it is increasingly important to promote the use of local green spaces as refugia for native plants and their pollinators. The aim of this project, therefore, was to identify and assess the visitation frequency of insect pollinators associated with an urban setting within the Piedmont region of Virginia, and compare their association with native versus closely-related but non-native summer-flowering plants. Several modes of insect examination were used to assess these metrics in the Brian Wesley Moores Native Plant Garden on the campus of Randolph-Macon College. We observed an overall preference for the native species on a total of four native:non-native pair comparisons, including a higher number of total insect visitors and a more diverse assortment of pollinator types. Our data supports the notion that native plant species should be prioritized in urban green spaces, as it provides the appropriate flora to support ecosystem balance in a setting threatened by human activities
Thermal conductivity of hydrate-bearing sediments
Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): B11103, doi:10.1029/2008JB006235.A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.This work was supported by the Chevron
Joint Industry Project on Methane Hydrates under contract DE-FC26-
01NT41330 to Georgia Institute of Technology from the U.S. Department
of Energy’s National Energy Technology Laboratory. J.C.S. received
additional support from the Goizueta Foundation. C.R. thanks the Petroleum
Research Fund of the American Chemical Society under AC8–31351
for early support of thermal conductivity research on hydrate-bearing
sediments at Georgia Institute of Technology
Observed and modeled black carbon deposition and sources in the Western Russian Arctic 1800-2014
https://doi.org/10.1021/acs.est.0c07656Black carbon (BC) particles contribute to climate warming by heating the atmosphere and reducing the albedo of snow/ice surfaces. The available Arctic BC deposition records are restricted to the Atlantic and North American sectors, for which previous studies suggest considerable spatial differences in trends. Here, we present first long-term BC deposition and radiocarbon-based source apportionment data from Russia using four lake sediment records from western Arctic Russia, a region influenced by BC emissions from oil and gas production. The records consistently indicate increasing BC fluxes between 1800 and 2014. The radiocarbon analyses suggest mainly (similar to 70%) biomass sources for BC with fossil fuel contributions peaking around 1960-1990. Backward calculations with the atmospheric transport model FLEXPART show emission source areas and indicate that modeled BC deposition between 1900 and 1999 is largely driven by emission trends. Comparison of observed and modeled data suggests the need to update anthropogenic BC emission inventories for Russia, as these seem to underestimate Russian BC emissions and since 1980s potentially inaccurately portray their trend. Additionally, the observations may indicate underestimation of wildfire emissions in inventories. Reliable information on BC deposition trends and sources is essential for design of efficient and effective policies to limit climate warming.Peer reviewe
Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaao4842, doi:10.1126/sciadv.aao4842.In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere.The National
Science Foundation (PLR-1417149; awarded to J.D.K.) primarily supported this work with
additional support provided by the U.S. Department of Energy (DE-FE0028980; awarded to
J.D.K.). Atmospheric 14C-CH4 measurements were funded by NASA via the Jet Propulsion
Laboratory (Earth Ventures project “Carbon in Arctic Reservoirs Vulnerability Experiment”) to
the University of Colorado under contract 1424124. K.M.S. acknowledges support from the
University of Minnesota Grant-in-Aid program
Role of domain walls in the abnormal photovoltaic effect in BiFeO3
Recently, the anomalous photovoltaic (PV) effect in BiFeO3 (BFO) thin
films, which resulted in open circuit voltages (V-oc) considerably
larger than the band gap of the material, has generated a revival of the
entire field of photoferroelectrics. Here, via temperature-dependent PV
studies, we prove that the bulk photovoltaic (BPV) effect, which has
been studied in the past for many non-centrosymmetric materials, is at
the origin of the anomalous PV effect in BFO films. Moreover, we show
that irrespective of the measurement geometry, V-oc as high as 50V can
be achieved by controlling the conductivity of domain walls (DW). We
also show that photoconductivity of the DW is markedly higher than in
the bulk of BFO
- …