70 research outputs found

    Protracted late Neoproterozic – early Palaeozoic deformation and cooling history of Sør Rondane, East Antarctica, from 40Ar/39Ar and U–Pb geochronology

    Get PDF
    40Ar/39Ar and U–Pb data from five structural domains constrain the late Neoproterozoic – early Palaeozoic tectonothermal history of the eastern part of the East African–Antarctic Orogen in Sør Rondane. A total of 27 new Ar/Ar ages span 570–474 Ma, roughly corresponding to the age range of three generations of syn- to post-tectonic granitoids. The ages are distinct for the five structural domains. The oldest cooling ages come from the weakly deformed southern part of the SW Terrane of Sør Rondane (SW Terrane S), a sliver of a Tonian island arc, which escaped much of the late Neoproterozoic accretionary deformation. This terrane was intruded by the oldest and largest granitoid complex at c. 640–620 Ma. The oldest Ar/Ar amphibole and biotite ages of 570–524 Ma are from the Main Shear Zone, along the northern margin of the SW Terrane S sliver. It hosts granites of age c. 584–570 Ma strung out along the shear zone. Two younger granitoid phases are recorded in the adjacent four terranes to the west, north and east of the SW Terrane S, and correlate with the younger group of Ar/Ar biotite ages spanning 513–474 Ma. We interpret the magmatic and cooling history of duration > 150 Ma to reflect repeated phases of accretion, magmatism and reactivation, that is, collage-style tectonism, partly pre-dating the incorporation of Sør Rondane into Gondwana. The study area first accreted to the cryptic Valkyrie Craton in Tonian times, was then ‘sandwiched’ between the Kalahari and Indo-Antarctica cratons, and experienced extensional tectonics and elevated heat flux due to lithospheric delamination, which resulted in slow cooling during the Pan-African Orogeny.publishedVersio

    Erosion at extended continental margins: Insights from new aerogeophysical data in eastern Dronning Maud Land

    Get PDF
    Modelling-, rock cooling-, sedimentation- and exposure-based interpretations of the mechanisms by which topography evolves at extended continental margins vary widely. Observations from the margin of Dronning Maud Land, Antarctica, have until now not strongly contributed to these interpretations. Here, we present new airborne gravity and radar data describing the eastern part of this margin. Inland of a tall (2.5 km) great escarpment, a plateau topped by a branching network of valleys suggests preservation of a fluvial landscape with SW-directed drainage beneath a cold-based ice sheet. The valley floor slopes show that this landscape was modified during a period of alpine-style glaciation prior to the onset of the current cold-based phase around 34 Ma. The volume of sediments in basins offshore in the Riiser-Larsen Sea balances with the volume of rock estimated to have been eroded and transported by north-directed drainage from between the escarpment and the continental shelf break. The stratigraphy of these basins shows that most of the erosion occurred during the ~40 Myr following late Jurassic continental breakup. This erosion is unlikely to have been dominated by backwearing because the required rate of escarpment retreat to its present location is faster than numerical models of landscape evolution suggest to be possible. We suggest an additional component of erosion by downwearing seawards of a pre-existing inland drainage divide. The eastern termination of the great escarpment and inland plateau is at the West Ragnhild trough, a 300 km long, 15–20 km wide and up to 1.6 km deep subglacial valley hosting the West Ragnhild glacier. Numerous overdeepened (by >300 m) segments of the valley floor testify to its experience of significant glacial erosion. Thick late Jurassic and early Cretaceous sediments fanning out from the trough's mouth into the eastern Riiser-Larsen Sea betray an earlier history as a river valley. The lack of late Jurassic relief-forming processes in this river's catchment in the interior of East Antarctica suggests this erosion was related to regional climatic change

    Geophysical imaging unveils the largest pull-apart basin in East Antarctica

    Get PDF
    West Antarctica hosts one of the largest continental rift systems on Earth, the West Antarctic Rift System (WARS) that forms the lithospheric cradle for the West Antarctic Ice Sheet. The WARS is known to have experienced several stages of extension starting with distributed/wide mode extension in the Cretaceous, followed by narrower mode and variably oblique extension in the Cenozoic, the latter potentially triggered by the onset of oceanic seafloor spreading in the Adare Basin (Davey et al., 2016, GRL). However, the extent and impact of Cenozoic extension and transtension within the Transantarctic Mountains sector of East Antarctica is much less well understood. Here we present results from a new project (REGGAE) that by analysing aeromagnetic, aerogravity and land-gravity and bedrock topography images and models provides key new geophysical constraints on the form, extent and kinematics of the largest Cenozoic pull-apart basin recognised so far in East Antarctica, the Rennick Graben (RG). Potential field imaging reveals the extent of part of a Jurassic tholeiitic Large Igneous Province preserved within the RG and helps delineate the inherited structural architecture of the underlying Ross-age basement in northern Victoria Land, including highly magnetic arc basement in the northern Wilson Terrane and the subglacial extent of a thrust fault belt located between the western flank of the RG and the eastern margin of Wilkes Subglacial Basin (WSB). We show that the RG is a major composite right-lateral pull-part basin that extends from the Oates Coast to the Southern Cross Mountains crustal block and propose that it is kinematically connected with both the western edge of the WARS and the eastern margin of the WSB. More cryptic evidence for an earlier phase of left-lateral strike slip deformation is also emerging from our recent geological field work in the study region and relatively subtle offsets in aeromagnetic anomaly patterns. Our findings suggest that the RG is part of a distributed region of the continental lithosphere in East Antarctica that was preferentially deformed in response to Cenozoic transtensional stresses that likely also facilitated propagation of accelerated oceanic transform faulting in the adjacent oceanic lithosphere located between southeastern Australia and Tasmania

    New geophysical data from a key region in East Antarctica: Estimates for the spatial extent of the Tonian Oceanic Arc Super Terrane (TOAST)

    Get PDF
    Within Antarctica, eastern Dronning Maud Land (DML) represents a key region for improving our understanding of crustal fragments that were involved in the amalgamation and breakup histories of Rodinia and Gondwana. An aerogeophysical survey was flown during the austral summers 2013/14 and 2014/15 to explore the largely ice- covered region south and east of Sør Rondane. Here, we present 40,000 new line kilometer of aeromagnetic data gathered across an area of ca. 295,000 km2 with a 10 km line spacing. Magnetic domains, major lineaments, lo- cations, and depths of magnetic source bodies are detected from total field data, their tilt derivative, pseudo- gravity, and analytical signal transformations, and from Euler Deconvolution maps. These data are integrated with exposure information from the Sør Rondane, Belgica and the Yamato mountains in order to identify the eastern spatial extent of a major juvenile Early Neoproterozoic crustal province, the Tonian Oceanic Arc Super Terrane (TOAST). Magnetic data reveal a characteristic pattern with NW-SE trending elongated magnetic anom- alies to the south of Sør Rondane. This area is interpreted as the eastward continuation of the distinct SE DML Province and therefore of the TOAST. Major curvilinear magnetic anomalies of several hundreds of kilometers length dissect the region south and southwest of Sør Rondane. These may represent boundaries of individual oce- anic arc terrane or alternatively major Pan-African shear zones. A significant change of the magnetic anomaly pat- tern ca. 800 km inland of Sør Rondane may indicate the southern minimum extent of the TOAST. Magnetic anomalies of varying size, amplitude, and orientation suggest a complex transitional area between the Belgica and Yamato Mts., which appears to separate the TOAST from an Indo-Antarctic craton to the east. The new data suggest that the TOAST is comparable in size with the Antarctic Peninsula and therefore represents a signif- icant piece of Neoproterozoic crustal addition. It originated at the periphery or outboard of Rodinia and is a rem- nant of the Mozambique Ocean

    Ice-ocean interactions at Riiser-Larsen Ice Shelf assessed by unveiling of seabed beneath it

    Get PDF
    The Riiser-Larsen ice shelf is the fourth largest ice shelf on Earth. The detailed depth and shape of the seabed beneath the ice shelf is entirely unknown. Since bed topography beneath ice shelves generally poses the controlling factor of heat exchange between the open ocean and water cavities, this unknown factor inhibits proper assessment of ice-ocean interactions. In coastal Dronning Maud Land, the intrusion of Warm Deep Water – a warm intermediate water mass transported by the Weddell Gyre – into the ice shelf cavities is strongly dependent on seabed depth. We are addressing this shortcoming by generating a bathymetric model beneath the ice shelf based on the inversion of gravity data and complementary data sets of magnetic and ice penetrating radar data, all acquired during the joint AWI-BGR airborne campaign ‘RIISERBATHY’ in 2022/23. The resulting model will have a resolution of 5 to 10 km and is complemented offshore by shipborne hydroacoustic data. We present the first versions of the model here. Modelled depths can be compared to thermocline depths of available in-situ oceanographic data close to and at the calving fronts. In doing so, we will identify key regions of possible entry for Warm Deep Water into the cavity beneath the ice shelf

    Bathymetry Beneath Ice Shelves of Western Dronning Maud Land, East Antarctica, and Implications on Ice Shelf Stability

    Get PDF
    Antarctica's ice shelves play a key role in stabilizing the ice streams that feed them. Since basal melting largely depends on ice-ocean interactions, it is vital to attain consistent bathymetry models to estimate water and heat exchange beneath ice shelves. We have constructed bathymetry models beneath the ice shelves of western Dronning Maud Land by inverting airborne gravity data and incorporating seismic, multibeam, and radar depth references. Our models reveal deep glacial troughs beneath the ice shelves and terminal moraines close to the continental shelf breaks, which currently limit the entry of Warm Deep Water from the Southern Ocean. The ice shelves buttress a catchment that comprises an ice volume equivalent to nearly 1 m of eustatic sea level rise, partly susceptible to ocean forcing. Changes in water temperature and thermocline depth may accelerate marine-based ice sheet drainage and constitute an underestimated contribution to future global sea level rise

    New Views of East Antarctica- from Columbia to Gondwana

    Get PDF
    East Antarctica is a keystone in the Gondwana, Rodinia and the Columbia supercontinents. Recent aerogeophysical research, augmented by satellite magnetic, gravity and seismological data is unveiling the crustal architecture of the continent. This is helping comprehend the impact of supercontinental processes such as subduction, accretion, rifting and intraplate tectonics on its evolution. A mosaic of Precambrian basement provinces is apparent in interior East Antarctica (Ferraccioli et al., 2011, Nature). A major suture separates the Archean-Neoproterozoic Ruker Province from an inferred Grenvillian-age orogenic Gamburtsev Province with remarkably thick crust (up to 60 km thick) and thick lithosphere (over 200 km thick). The age of the suturing and its linkages with supercontinental assembly is debated with both Rodinia and Gondwana candidates being proposed. Further east, magnetic highs delineate a Paleo to Mesoproterozoic Nimrod-South Pole igneous province (Goodge and Finn, 2010 JGR) that flanks a composite Mawson Continent- including the Gawler Craton of South Australia (Aitken et al., 2014 GRL). An over 1,900 km long magnetic and gravity lineament is imaged along the western flank of the Wilkes Subglacial Basin and is interpreted here as a major Paleoproterozoic suture zone linked to the collision of Laurentia and East Antarctica within Columbia. The proposed suture played a pivotal role helping localise Neoproterozoic Rodinia rifted margin evolution and forming a backstop for the Ross-Delamerian cycle of Gondwana amalgamation. Aeromagnetic and gravity imaging help determine the extent of a Keweenawan-age (ca 1.1 Ga) large igneous province in the Coats Land Block -isotopically tied with the Mid-Continent Rift System of Laurentia (Loewy et al., 2011 Geology). Imprints of Grenvillian magmatic arc accretion link together the Namaqua-Natal and Maud belts in South Africa and Dronning Maud Land within Rodinia. The aeromagnetically distinct Southeast Dronning Maud Land province (Mieth and Jokat, 2014 GR) may represent a separate 1000-900 Ma Oceanic Arc Superterrane (Jacobs et al., 2015 Prec. Res.). New geophysical views of the Shackleton Range suture lend weight to more complex collisional and indentation tectonic models for the Pan-African age assembly of Gondwan

    CONNECTING GEOLOGY AND GEOPHYSICS: THE GEODYNAMIC EVOLUTION OF DRONNING MAUD LAND FROM RODINIA TO GONDWANA

    Get PDF
    East Antarctica consists of a number of cratonic fragments that amalgamated along distinct orogenic belts in late Neoproterozoic to early Palaeozoic times. These mobile belts include the c. 640 to 500 Ma old East African-Antarctic Orogen (EAAO) and the Kuunga Orogen, which seem to converge in Dronning Maud Land in the Atlantic sector of Antarctica. The polymetamorphic basement of Dronning Maud Land is characterized by rocks with Grenville-age protolith ages of c. 1130 to 1000 Ma in the west and rocks with early Neoproterozoic protolith ages of c. 1000 to 900 Ma in the east. These two provinces are separated by the prominent Forster Magnetic Anomaly, which is therefore interpreted to represent a suture zone. Four joint AWI-BGR international expeditions within the WEGAS (West-East Gondwana Amalgamation and Separation) and GEA (Geodynamic Evolution of East Antarctica) programmes between 2010 and 2015 have provided new combined geological and geophysical data that reveal a complex crustal architecture between central Dronning Maud Land and Lützow-Holm-Bay. The magnetic anomaly pattern changes significantly east of the Forster Magnetic Anomaly with apparently no indication of Maud-type crust. Particularly, the GEA II campaign (2011-12) targeted a series of previously unvisited nunataks in the largely ice- covered Borchgrevink-Isen between central Dronning Maud Land and Sør Rondane from Urna and Sørsteinen in the west to Blåklettane and Bergekongen in the east. This region is characterized by NW-SE trending distinct linear magnetic anomalies. This pattern is referred to as the SE Dronning Maud Land Province and was previously interpreted as a fragment of potentially older cratonic crust south of an Ediacaran to Cambrian mobile belt that crops out in Sør Rondane. New SHRIMP/SIMS U-Pb zircon ages and geochemical analyses, however, indicate that this region consists of Rayner-age (c. 1000 to 900 Ma) juvenile arc and metasedimentary cover rocks, which were intensely reworked by medium- to high-grade metamorphism and felsic melt injections between c. 630 and 520 Ma. The juvenile rocks are very similar to a gabbro-tonalite-trondhjemite-granodiorite (GTTG) suite in the southern SW Terrane of Sør Rondane, which yield crystallization ages of c. 1000 to 920 Ma based on U-Pb zircon geochronology. The juvenile character of this suite suggests a long-lived accretionary setting in early Neoproterozoic times. While the rocks in the Borchgrevink-Isen further west were intensely reworked in Pan-African times, the GTTG complex in Sør Rondane shows evidence of Pan-African up to lower amphibolite-facies thermal overprint, but still contains large domains with apparently only weak deformation. An exception is the northern margin of the GTTG complex where high-strain dextral shear is related to the prominent Main Shear Zone that is estimated to be of latest Ediacaran to early Cambrian age (c. 560 to 530 Ma). This structure, which we interpret as part of a fault system related to NE-directed lateral extrusion of the EAAO, separates the Rayner-age GTTG complex from a series of greenschist- to granulite-facies metasupracrustal rocks of mainly volcano-sedimentary origin. They in turn are separated from the amphibolite- to granulite-facies NE Terrane in the north and north-east by the Main Tectonic Boundary that is postulated by researches of the Japanese National Antarctic Programme. Available literature and our own new geochronological data indicate that peak and retrograde metamorphism in the NE and SW terranes was at c. 640 to 530 Ma. Both terranes were intruded by several granitoid magmatic pulses between c. 650 and 500 Ma. In contrast to “Indo-Antarctic” affinities of the GTTG complex south of the Main Shear Zone and the similar rocks of the SE Dronning Maud Land Province to the west, these units thus appear to have rather “East African” affinities. Furthermore, grey heterogeneous gneisses and augen-gneisses of the aforementioned meta-volcanosedimentary supracrustal rocks of the SW Terrane close to the Main Shear Zone gave zircon crystallization ages of c. 750 Ma. Such ages are unknown from the EAAO in central and western Dronning Maud Land west of the Forster Magnetic Anomaly. Taking all evidence together, we propose that the Forster Magnetic Anomaly separates distinctly different parts of the EAAO. These are (i) a reworked, mainly Grenville-age crust of the Maud Belt to the west representing the overprinted margin of the Kalahari Craton, and (ii) a part of the orogen dominated by early Neoproterozoic accretionary tectonics to the east, which we refer to as Tonian Ocean Arc Super Terrane (TOAST). The contrast between these two crustal units is also reflected in the geochemistry of voluminous late-tectonic granitoids across the whole belt. Based on our new geological and aerogeophysical evidence, the regional crustal structure of eastern Dronning Maud Land as a whole may tentatively be interpreted as reflecting large-scale lateral extrusion of the EAAO post-dating continental collision in the late Neoproterozoic and early Cambrian

    A multi-method approach to study the geodynamic evolution of eastern Dronning Maud Land in East Antarctica by integrating geophysical data with surface geology

    Get PDF
    Planet Earth has not always been as it appears today. Since billions of years, continents have been drifting continually caused by lateral variations of mantle density resulting in convection. Analyzing the movement of lithospheric plates back in eartha s history is essential for the determination of the shape of ancient supercontinents. It further provides paleogeographic information and is vital for biogeographic and climate studies. Whereas the break-up of the former extensive landmass of Gondwana can be reconstructed fairly well by analyzing seafloor-spreading anomalies of the oceanic crust, the amalgamation of Gondwana still needs to be understood in more detail. This is because oceanic crust, that rarely exceeds 180 million years in age, does not provide any direct evidence for the amalgamation of Gondwana in Late Neoproterozoic/Early Palaeozoic times as well as for older supercontinent cycles. East Antarctica, once centerpiece of Gondwana, can be considered a rather stable region as it has not been affected by orogenic processes since the Early Paleozoic except for its Palaeo-Pacific margin. Furthermore, the Antarctic plate is mainly surrounded by mid-ocean ridges and features continental rift systems widely related to the break-up of Gondwana. Therefore, exposed regions that can be found in Sor Rondane, East Antarctica, are well suited for studying the formation and break-up of Gondwana as well as preceding collision and break-up processes. Sor Rondane is situated in eastern Dronning Maud Land and exposes the contact zone of crustal blocks of different origin and architecture. Therefore, it is considered to be a site of at least one suture between East and West Gondwana. This study examines the final amalgamation and break-up history of Gondwana by investigating Sor Rondane and adjacent regions. To answer those questions, a detailed understanding of the crustal architecture is essential. This encompasses the number of involved crustal fragments, the location of their boundaries and their geological evolution. Moreover, this comprises the structural and metamorphic evolution as well as the shallow crustal dynamics of Sor Rondane. Due to the extensive ice-coverage of this region, the study of exposed rocks by various geological methods was combined with regional aerogeophysical investigations. In the austral summers 2010/11 and 2011/12, structural field work and geological sampling were executed by the Federal Institute for Geosciences and Natural Resources (BGR). Additional airborne geophysical surveys were flown in collaboration with the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), between 2010 and 2015. The data set includes ice-penetrating radar, aeromagnetic and aerogravity measurements. These combined geological and geophysical data sets are used to analyse the structure and composition of rock units and enable to map units beneath the ice not accessible to geological methods. For instance, fault systems may correlate with magnetic lineaments gained from aeromagnetic anomaly data. These can be tracked over large distances underneath the ice and thus facilitate interpretations at a larger scale
    • …
    corecore