179 research outputs found
Nanoparticles of Cu2ZnSnS4 as performance enhancing additives for organic field-effect transistors
The addition of oleylamine coated Cu2ZnSnS4 (CZTS) nanoparticles to solutions of an organic semiconductor used to fabricate organic field-effect transistors (OFETs) has been investigated. The oligothiophene-based small molecule 5T-TTF and the polymer poly(3-hexylthiophene) (P3HT) were each applied in the transistors with various concentrations of CZTS (5-20%). Atomic force microscopy (AFM) was applied to characterise the surface morphology of the OFETs. The use of 5 and 10 wt% of the CZTS nanoparticles in 5T-TTF and P3HT solutions, respectively, appears to be a simple and effective way of improving OFET performance
Correction: Nanoparticles of Cu2ZnSnS4 as performance enhancing additives for organic field-effect transistors
Correction for 'Nanoparticles of Cu2ZnSnS4 as performance enhancing additives for organic field-effect transistors' by Punarja Kevin et al., J. Mater. Chem. C, 2016, DOI: 10.1039/c6tc01650b
Thiazole-induced rigidification in substituted dithieno-tetrathiafulvalene : the effect of planarisation on charge transport properties
Two novel tetrathiafulvalene (TTF) containing compounds 1 and 2 have been synthesised via a four-fold Stille coupling between a tetrabromo-dithienoTTF 5 and stannylated thiophene 6 or thiazole 4. The optical and electrochemical properties of compounds 1 and 2 have been measured by UV-vis spectroscopy and cyclic voltammetry and the results compared with density functional theory (DFT) calculations to confirm the observed properties. Organic field effect transistor (OFET) devices fabricated from 1 and 2 demonstrated that the substitution of thiophene units for thiazoles was found to increase the observed charge transport, which is attributed to induced planarity through S-N interactions of adjacent thiazole nitrogen atoms and TTF sulfur atoms and better packing in the bulk
Novel 4,8-benzobisthiazole copolymers and their field-effect transistor and photovoltaic applications
We are grateful to the EPSRC for funding through grants C, EP/L012294/1, EP/L017008/1 and EP/L012200/1 and to the European Research Council for funding from Grant 321305. Supporting data are accessible from 10.15129/9b457e8c-12bc-4a3a-9af3-7f53474f4e5c.A series of copolymers containing the benzo[1,2-d:4,5-d′]bis(thiazole) (BBT) unit has been designed and synthesised with bisthienyl-diketopyrrolopyrrole (DPP), dithienopyrrole (DTP), benzothiadiazole (BT), benzodithiophene (BDT) or 4,4′-dialkoxybithiazole (BTz) comonomers. The resulting polymers possess a conjugation pathway that is orthogonal to the more usual substitution pathway through the 2,6-positions of the BBT unit, facilitating intramolecular non-covalent interactions between strategically placed heteroatoms of neighbouring monomer units. Such interactions enable a control over the degree of planarity through altering their number and strength, in turn allowing for tuning of the band gap. The resulting 4,8-BBT materials gave enhanced mobility in p-type organic field-effect transistors of up to 2.16 × 10-2 cm2 V-1 s-1 for pDPP2ThBBT and good solar cell performance of up to 4.45% power conversion efficiency for pBT2ThBBT.Publisher PDFPeer reviewe
Recommended from our members
Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator noccaea caerulescens
Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea. A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOSTM clones with insert sizes ~20–40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs. Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter b-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue. This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor >40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae
Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model
Structural models for the primary strength and durability-giving reaction product in modern cements, a calcium (alumino)silicate hydrate gel, have previously been based solely on non-cross-linked tobermorite structures. However, recent experimental studies of laboratory-synthesized and alkali-activated slag (AAS) binders have indicated that the calcium–sodium aluminosilicate hydrate [C-(N)-A-S-H] gel formed in these systems can be significantly cross-linked. Here, we propose a model that describes the C-(N)-A-S-H gel as a mixture of cross-linked and non-cross-linked tobermorite-based structures (the cross-linked substituted tobermorite model, CSTM), which can more appropriately describe the spectroscopic and density information available for this material. Analysis of the phase assemblage and Al coordination environments of AAS binders shows that it is not possible to fully account for the chemistry of AAS by use of the assumption that all of the tetrahedral Al is present in a tobermorite-type C-(N)-A-S-H gel, due to the structural constraints of the gel. Application of the CSTM can for the first time reconcile this information, indicating the presence of an additional activation product that contains highly connected four-coordinated silicate and aluminate species. The CSTM therefore provides a more advanced description of the chemistry and structure of calcium–sodium aluminosilicate gel structures than that previously established in the literature
The 2017 Terahertz Science and Technology Roadmap
Science and technologies based on terahertz frequency electromagnetic radiation (100GHz-30THz) have developed rapidly over the last 30 years. For most of the 20th century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to “real world” applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2016, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 17 sections that cover most of the key areas of THz Science and Technology. We hope that The 2016 Roadmap on THz Science and Technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies
The sustainable materials roadmap
Over the past 150 years, our ability to produce and transform engineered materials has been responsible for our current high standards of living, especially in developed economies. However, we must carefully think of the effects our addiction to creating and using materials at this fast rate will have on the future generations. The way we currently make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It affects the next generations by putting in danger the future of the economy, energy, and climate. We are at the point where something must drastically change, and it must change now. We must create more sustainable materials alternatives using natural raw materials and inspiration from nature while making sure not to deplete important resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic materials and create a circular materials economy where reuse and recycle are priorities. We must develop sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole materials life cycle from raw resources till end of life and apply thorough life cycle assessments (LCAs) based on reliable and relevant data to quantify sustainability. We need to seriously start thinking of where our future materials will come from and how could we track them, given that we are confronted with resource scarcity and geographical constrains. This is particularly important for the development of new and sustainable energy technologies, key to our transition to net zero. Currently 'critical materials' are central components of sustainable energy systems because they are the best performing. A few examples include the permanent magnets based on rare earth metals (Dy, Nd, Pr) used in wind turbines, Li and Co in Li-ion batteries, Pt and Ir in fuel cells and electrolysers, Si in solar cells just to mention a few. These materials are classified as 'critical' by the European Union and Department of Energy. Except in sustainable energy, materials are also key components in packaging, construction, and textile industry along with many other industrial sectors. This roadmap authored by prominent researchers working across disciplines in the very important field of sustainable materials is intended to highlight the outstanding issues that must be addressed and provide an insight into the pathways towards solving them adopted by the sustainable materials community. In compiling this roadmap, we hope to aid the development of the wider sustainable materials research community, providing a guide for academia, industry, government, and funding agencies in this critically important and rapidly developing research space which is key to future sustainability.journal articl
Extended self-knowledge
We aim to move the externalism and self-knowledge debate forward by exploring two novel sceptical challenges to the prospects of self-knowledge of a paradigmatic sort, both of which result from ways in which our thought content, cognitive processes and cognitive successes depend crucially on our external environments. In particular, it is shown how arguments from extended cognition (e.g., Clark A, Chalmers D. Analysis 58:7–19 (1998); Clark A. Supersizing the mind: Embodiment, action, and cognitive extension. Oxford: Oxford University Press (2008)) and situationism (e.g., Alfano M. The Philosophical Quarterly 62:223–249 (2012), Alfano M. Expanding the situationist challenge to reliabilism about inference. In Fairweather A (ed) Virtue epistemology naturalized, Springer, Dordrecht, pp 103–122 (2014); Doris JM. Noûs 32:504–530 (1998), Doris JM. Lack of character: Personality and moral behavior. Cambridge University Press, Cambridge (2002); Harman G. Proceedings of the Aristotelian Society. 99:315–331 (1999), Harman G. Proceedings of the Aristotelian Society 100:223–226 (2000)) pose hitherto unexplored challenges to the prospects of self-knowledge as it is traditionally conceived. It is shown, however, that, suitably understood, these apparent challenges in fact only demonstrate two ways in which our cognitive lives can be dependent on our environment. As such, rather than undermining our prospects for attaining self-knowledge, they instead illustrate how self-knowledge can be extended and expanded
Schools out : Adam Smith and pre-disciplinary international political economy
In this article, I argue that invocations of Adam Smith in international political economy (IPE) often reveal the influence therein of a disciplinary ontological disaggregation of economic and non-economic rationality, which I claim is obscured by the tendency to map its complex intellectual contours in terms of competing schools. I trace the origins of the disciplinary characterisation of Smith as the founder of IPE's liberal tradition to invocations of his thought by centrally important figures in the perceived Austrian, Chicago and German historical schools of economics, and reflect upon the significance to IPE of the reiteration of this portrayal by apparent members of its so-called American and British schools. I additionally contrast these interpretations to those put forward by scholars who seek to interpret IPE and Smith's contribution to it in pre-disciplinary terms, which I claim reflects a distinct ontology to that attributed to the British school of IPE with which their work is often associated. I therefore contend that reflection upon invocations of Smith's thought in IPE problematises the longstanding tendency to map its intellectual terrain in terms of competing schools, reveals that the disciplinary ontological consensus that informs this tendency impacts upon articulations of its core concerns and suggests that a pre-disciplinary approach offers an alternative lens through which such concerns might be more effectively framed
- …