907 research outputs found
Trust Model for Protection of Personal Health Data in a Global Environment
Successful health care, eHealth, digital health, and personal health systems increasingly take place in cross-jurisdictional, dynamic and risk-encumbered information space. They require rich amount of personal health information (PHI). Trust is and will be the cornerstone and prerequisite for successful health services. In global environments, trust cannot be expected as granted. In this paper, health service in the global environment is perceived as a meta-system, and a trust management model is developed to support it. The predefined trusting belief currently used in health care is not transferable to global environments. In the authors' model, the level of trust is dynamically calculated from measurable attributes. These attributes describe trust features of the service provider and its environment. The calculated trust value or profile can be used in defining the risk service user has to accept when disclosing PHI, and in definition of additional privacy and security safeguards before disclosing PHI and/or using services
How a service user knows the level of privacy and to whom trust in pHealth systems?
pHealth is a data (personal health information) driven approach that use communication networks and platforms as technical base. Often it’ services take place in distributed multi-stakeholder environment. Typical pHealth services for the user are personalized information and recommendations how to manage specific health problems and how to behave healthy (prevention). The rapid development of micro- and nano-sensor technology and signal processing makes it possible for pHealth service provider to collect wide spectrum of personal health related information from vital signs to emotions and health behaviors. This development raises big privacy and trust challenges especially because in pHealth similarly to eCommerce and Internet shopping it is commonly expected that the user automatically trust in service provider and used information systems. Unfortunately, this is a wrong assumption because in pHealth’s digital environment it almost impossible for the service user to know to whom to trust, and what the actual level of information privacy is. Therefore, the service user needs tools to evaluate privacy and trust of the service provider and information system used. In this paper, the authors propose a solution for privacy and trust as results of their antecedents, and for the use of computational privacy and trust. To answer the question, which antecedents to use, two literature reviews are performed and 27 privacy and 58 trust attributes suitable for pHealth are found. A proposal how to select a subset of antecedents for real life use is also provided
The SaPPART COST Action: Towards Positioning Integrity for Road Transport
Global Navigation Satellite Systems (GNSS) is becoming one of the main components supporting Intelligent Transport Systems (ITS) and value-added services in road transport and personal mobility. The use of GNSS is expected to grow significantly due to improvements in positioning performance, with positive impacts such as: finding the optimal route; improving traffic and travel efficiency as well as safety and security; reducing congestion and optimizing fuel consumption. The deployment of mission critical applications needs high reliability in the positioning information. However, the positioning reliability is not easy to achieve because of the heterogeneous quality of the GNSS signal, which is highly influenced by the road environment and the operational scenario of the application. It is important to understand the requirements and performance GNSS can achieve for various road transport applications. This paper is presenting the SaPPART COST Action on the Satellite Positioning Performance Assessment for Road Transport. It introduces the goal and the framework of the Action with the research programme and some related activities dedicated to dissemination and supporting standardisation working groups
Autonomous systems and artificial intelligence – Hype or prerequisite for P5 medicine?
For meeting the challenge of aging, multi-diseased societies, cost containment, workforce development and consumerism by improved care quality and patient safety as well as more effective and efficient care processes, health and social care systems around the globe undergo an organizational, methodological and technological transformation towards personalized, preventive, predictive, participative precision medicine (P5 medicine). This paper addresses chances, challenges and risks of specific disruptive methodologies and technologies for the transformation of health and social care systems, especially focusing on the deployment of intelligent and autonomous systems
Data Modeling Challenges of Advanced Interoperability
Progressive health paradigms, involving many different disciplines and combining multiple policy domains, requires advanced interoperability solutions. This results in special challenges for modeling health systems. The paper discusses classification systems for data models and enterprise business architectures and compares them with the ISO Reference Architecture. On that basis, existing definitions, specifications and standards of data models for interoperability are evaluated and their limitations are discussed. Amendments to correctly use those models and to better meet the aforementioned challenges are offered
AX-PET: A novel PET concept with G-APD readout
Abstract The AX-PET collaboration has developed a novel concept for high resolution PET imaging to overcome some of the performance limitations of classical PET cameras, in particular the compromise between spatial resolution and sensitivity introduced by the parallax error. The detector consists of an arrangement of long LYSO scintillating crystals axially oriented around the field of view together with arrays of wave length shifter strips orthogonal to the crystals. This matrix allows a precise 3D measurement of the photon interaction point. This is valid both for photoelectric absorption at 511 keV and for Compton scattering down to deposited energies of about 100 keV. Crystals and WLS strips are individually read out using Geiger-mode Avalanche Photo Diodes (G-APDs). The sensitivity of such a detector can be adjusted by changing the number of layers and the resolution is defined by the crystal and strip dimensions. Two AX-PET modules were built and fully characterized in dedicated test set-ups at CERN, with point-like 22 Na sources. Their performance in terms of energy ( R energy ≈ 11.8 % (FWMH) at 511 keV) and spatial resolution was assessed ( σ axial ≈ 0.65 mm ), both individually and for the two modules in coincidence. Test campaigns at ETH Zurich and at the company AAA allowed the tomographic reconstructions of more complex phantoms validating the 3D reconstruction algorithms. The concept of the AX-PET modules will be presented together with some characterization results. We describe a count rate model which allows to optimize the planing of the tomographic scans
Shape coexistence at the proton drip-line: First identification of excited states in 180Pb
Excited states in the extremely neutron-deficient nucleus, 180Pb, have been
identified for the first time using the JUROGAM II array in conjunction with
the RITU recoil separator at the Accelerator Laboratory of the University of
Jyvaskyla. This study lies at the limit of what is presently achievable with
in-beam spectroscopy, with an estimated cross-section of only 10 nb for the
92Mo(90Zr,2n)180Pb reaction. A continuation of the trend observed in 182Pb and
184Pb is seen, where the prolate minimum continues to rise beyond the N=104
mid-shell with respect to the spherical ground state. Beyond mean-field
calculations are in reasonable correspondence with the trends deduced from
experiment.Comment: 5 pages, 4 figures, submitted to Phys.Rev.
- …