272 research outputs found

    Self-Assembly of Supramolecular Triblock Copolymer Complexes

    Get PDF
    Four different poly(tert-butoxystyrene)-b-polystyrene-b-poly(4-vinylpyridine) (PtBOS-b-PS-b-P4VP) linear triblock copolymers, with the P4VP weight fraction varying from 0.08 to 0.39, were synthesized via sequential anionic polymerization. The values of the unknown interaction parameters between styrene and tert-butoxystyrene and between tert-butoxystyrene and 4-vinylpyridine were determined from random copolymer blend miscibility studies and found to satisfy 0.031<χS,tBOS<0.034 and 0.39<χ4VP,tBOS<0.43, the latter being slightly larger than the known 0.30<χS,4VP≤0.35 value range. All triblock copolymers synthesized adopted a P4VP/PS core/shell cylindrical self-assembled morphology. From these four triblock copolymers supramolecular complexes were prepared by hydrogen bonding a stoichiometric amount of pentadecylphenol (PDP) to the P4VP blocks. Three of these complexes formed a triple lamellar ordered state with additional short length scale ordering inside the P4VP(PDP) layers. The self-assembled state of the supramolecular complex based on the triblock copolymer with the largest fraction of P4VP consisted of alternating layers of PtBOS and P4VP(PDP) layers with PS cylinders inside the latter layers. The difference in morphology between the triblock copolymers and the supramolecular complexes is due to two effects: (i) a change in effective composition and, (ii) a reduction in interfacial tension between the PS and P4VP containing domains. The small angle X-ray scattering patterns of the supramolecules systems are very temperature sensitive. A striking feature is the disappearance of the first order scattering peak of the triple lamellar state in certain temperature intervals, while the higher order peaks (including the third order) remain. This is argued to be due to the thermal sensitivity of the hydrogen bonding and thus directly related to the very nature of these systems.

    Oscillatory Shear Flow-Induced Alignment of Lamellar Melts of Hydrogen-Bonded Comb Copolymer Supramolecules

    Get PDF
    In this work we present the orientational behavior of comb copolymer-like supramolecules P4VP(PDP)1.0, obtained by hydrogen bonding between poly(4-vinylpyridine) and pentadecylphenol, during large-amplitude oscillatory shear flow experiments over a broad range of frequencies (0.001-10 Hz). The alignment diagram, presenting the macroscopic alignment in T/TODT vs ω/ωc, contains three regions of parallel alignment separated by a region of perpendicular alignment. For our material, the order-disorder temperature TODT = 67 °C and ωc, the frequency above which the distortion of the chain conformation dominates the materials’ viscoelasticity, is around 0.1 Hz at 61 °C. For the first time flipping from a pure transverse alignment via biaxial transverse/perpendicular alignment to a perpendicular alignment as a function of the strain amplitude was found.

    First record of promops davisoni (Thomas, 1921) (chiroptera, molossidae) from Chile and a description of its echolocation calls

    Get PDF
    [Primer registro de promops davisoni (Thomas, 1921) (chiroptera, molossidae) en Chile, y des-cripción de sus llamadas de ecolocación]Few studies have been conducted on the bat fauna of the Arica and Parinacota region, northern Chile. The genus Promops (Gervais, 1855) is a poorly known group of molossid bats, with three species widely distributed in Central and South America. We report for the first time the species Promops davisoni in Chile. Identification was based on echolocation calls obtained at the Azapa and Lluta valleys and compared to reference calls from Tacna, Peru. We report the species as far as 127 km south of the previous published southernmost record in Pampa Alta, Peru. In addition we obtained an individual found at the Anzota caves, near the city of Arica. The species is found on the coast and in the fluvial valleys of Northern Chile, with altitudes ranging from sea level to 822 m a.s.l. We propose that the distribution of P. davisoni may extend further south, to the locality of Tana in the Tarapacá region, based on the capacity of the species to cross distances of over 100 km over large desert areas. With this species, we increase the known bat fauna of Chile to 14 species, and the bat fauna of the Arica and Parinacota region to nine species. © SAREM, 2018.Peer reviewe

    Differences in topographic and soil habitat specialization between trees and two understorey plant groups in a Costa Rican lowland rain forest

    Get PDF
    Two core questions in plant community ecology are to what extent the distributions of species are structured by local environmental conditions, and whether taxa differ in this regard. We compared the distributions of trees, Melastomataceae and ferns on soil and topographic gradients in a Costa Rican lowland rain forest (trees and ferns 983 plots, Melastomataceae 277 plots). To test whether these plant groups differed in the prevalence or type of habitat specialization, we calculated species' environmental optima and tolerances on each gradient. Habitat specialization was defined as a significantly biased optimum, or a narrow tolerance, relative to values obtained under spatially restricted randomizations of species occurrences. Within plant groups, we also asked whether the dispersion of species optima differed from random expectation on each gradient. Fern optima were over-dispersed on multiple gradients, implying considerable interspecific habitat partitioning, and tree optima were over-dispersed in relation to topographic position. Habitat specialization was more prevalent in the two predominantly understorey groups than in trees (75% of Melastomataceae species, 81-87% of ferns, 57-58% of trees). Species optima of Melastomataceae and ferns also tended towards lower landscape positions than did those of trees, perhaps reflecting a higher proportion of drought-sensitive species in these two groups

    Phytolith assemblages in the leaves of Guadua bamboo in Amazonia

    Get PDF
    Abstract: We studied phytoliths (plant stones) from 228 leaf samples of Guadua weberbaueri and Guadua sarcocarpa bamboos from eleven collection locations in Southern Peruvian Amazonia and in the state of Acre in Brazil. Four leaf-blade transverse thin sections were made by grinding and smoothing them into a 30 µm thickness, and over 550 phytolith slides created by using both the dry ashing and wet oxidation methods. Large-sized (up to 50 µm) cuneiform bulliform cells in the intercostal adaxial leaf-blade areas were the most conspicuous phytoliths in Guadua leaves, but their abundance varied even locally. Other recurrent phytolith types included bilobate, saddle, and rondel shaped short cells; long cells in many different sizes and ornamentations; and prickle hairs, spikes, stomatal, and inter-stomatal cells. We found the definite classification of phytoliths into morphotypes difficult because of their variable sizes, forms, and surface characteristics. Conjoined tricellular cell structures with one to three mineral-accumulating cells forming a characteristic mushroom-like constellation were also documented. Fusoid cells forming dense rows attached to the costal zones locally showed mineralization, indicating their role in inorganic mineral mobilization and deposition in Guadua leaves. Foliar phytolith assemblages showed little variation among the different collection locations compared to the variation found among leaves within individual sites.Keywords: Amazonia, bamboo, fusoid cell, Guadua, leaf, phytolith </p

    Accessibility predicts structural variation of Andean Polylepis forests

    Get PDF
    High Andean mountain forests, formed almost purely by trees of the genus Polylepis, occur nowadays as scattered remnant patches of a more continuous past distribution. Apparently, the destruction of Polylepis forests has mainly been caused by millennia of human disturbance, although forest distribution may also have fluctuated according to prevailing climatic conditions. Nowadays, the remaining Polylepis forest stands are still threatened by anthropogenic disturbance, which gradually degrades the forests. The aim of our study was to test if the structural variation of Polylepis forest patches, as an indication of forest degradation, can be predicted by accessibility to humans. The study was carried out in the Cordilleras Vilcanota and Vilcabamba, Cuzco, Peru. We used indices of forest biomass and proportion of vegetative regeneration as forest structural variables. First we examined the dependence of these variables on elevation with linear regressions. We did this separately for different Polylepis species and combining the species within humid and dry areas. Thereafter, we used the residual forest structural variation to assess possible relationships with accessibility, quantified as geographical distance to the nearest village, road or market centre. We found several significant relationships between the structural variables and accessibility, which may reflect different landscape related preferences in forest use. The results suggest accessibility can be used for rapid spatial prediction of Polylepis forest degradation, which facilitates identifying Polylepis forests that are potentially the most degraded and therefore in the most urgent need of restoration or conservation activities

    Floristic composition and across-track reflectance gradient in Landsat images over Amazonian forests

    Get PDF
    Remotely sensed image interpretation or classification of tropical forests can be severely hampered by the effects of the bidirectional reflection distribution function (BRDF). Even for narrow swath sensors like Landsat TM/ETM+, the influence of reflectance anisotropy can be sufficiently strong to introduce a cross track reflectance gradient. If the BRDF could be assumed to be linear for the limited swath of Landsat, it would be possible to remove this gradient during image preprocessing using a simple empirical method. However, the existence of natural gradients in reflectance caused by spatial variation in floristic composition of the forest can restrict the applicability of such simple corrections. Here we use floristic information over Peruvian and Brazilian Amazonia acquired through field surveys, complemented with information from geological maps, to investigate the interaction of real floristic gradients and the effect of reflectance anisotropy on the observed reflectances in Landsat data. In addition, we test the assumption of linearity of the BRDF for a limited swath width, and whether different primary non-inundated forest types are characterized by different magnitudes of the directional reflectance gradient. Our results show that a linear function is adequate to empirically correct for view angle effects, and that the magnitude of the across-track reflectance gradient is independent of floristic composition in the non-inundated forests we studied. This makes a routine correction of view angle effects possible. However, floristic variation complicates the issue, because different forest types have different mean reflectances. This must be taken into account when deriving the correction function in order to avoid eliminating natural gradients. (C) 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved

    A compositional turnover zone of biogeographical magnitude within lowland Amazonia

    Get PDF
    Aim To assess the relative roles of geologically defined terrain types ( environmental heterogeneity) and a major river ( physical dispersal barrier) as predictors of ecological structuring and biogeographical differentiation within Amazonian forests.Location Western Brazilian Amazonia, where the Jurua river and its terraces cross a 1000-km-long boundary between two geological formations ( the Solimoes and Ica Formations).Methods We sampled a 500-km stretch of the Jurua with 71 transects ( 5 m by 500 m) that spanned both the river and the geological boundary. All transects were inventoried for pteridophytes ( ferns and lycophytes) and Melastomataceae, and a subset of 39 transects also for palms and Zingiberales. Three surface soil samples were collected from each transect. The data were analysed using ordinations, regression trees, indicator species analyses and Mantel tests.Results All plant groups showed congruent species turnover between geologically defined terrain types, but little evidence of isolation by the river or geographical distance. Soil cation concentration differed between the Solimoes Formation and other terrain types and emerged as the main explanatory factor for species turnover. A large proportion of the plant species were significant indicators for specific parts of the soil cation concentration gradient, and these edaphic associations were congruent with those found in other parts of Amazonia. Pteridophytes had a larger proportion of species in the cation-rich soils than the other plant groups did, and palms had a higher proportion of generalists.Main conclusions The geological boundary between the Solimoes and Ica formations is confirmed as significant floristic turnover zone. As it runs in a north-south orientation for more than 1000 km, the edaphic differences associated with this boundary have wide-ranging implications for speciation and biogeographical patterns in Amazonia
    • …
    corecore