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Abstract

Remotely sensed image interpretation or classification of tropical forests can

be severely hampered by the effects of the bidirectional reflection distribution

function (BRDF). Even for narrow swath sensors like Landsat TM/ETM+, the

influence of reflectance anisotropy can be sufficiently strong to introduce a cross-

track reflectance gradient. If the BRDF could be assumed to be linear for the

limited swath of Landsat, it would be possible to remove this gradient during

image preprocessing using a simple empirical method. However, the existence

of natural gradients in reflectance caused by spatial variation in floristic compo-

sition of the forest can restrict the applicability of such simple corrections. Here

we use floristic information over Peruvian and Brazilian Amazonia acquired

through field surveys, complemented with information from geological maps, to

investigate the interaction of real floristic gradients and the effect of reflectance

anisotropy on the observed reflectances in Landsat data. In addition, we test

the assumption of linearity of the BRDF for a limited swath width, and whether

different primary non-inundated forest types are characterized by different mag-

nitudes of the directional reflectance gradient. Our results show that a linear

function is adequate to empirically correct for view angle effects, and that the

magnitude of the across-track reflectance gradient is independent of floristic
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composition in the non-inundated forests we studied. This makes a routine cor-

rection of view angle effects possible. However, floristic variation complicates

the issue, because different forest types have different mean reflectances. This

must be taken into account when deriving the correction function in order to

avoid eliminating natural gradients.

Keywords: Amazonia, BRDF, Landsat, ferns and lycophytes, floristic

composition, Melastomataceae, radiometric correction, tropical forests

1. Introduction

Amazonian rain forests, especially the non-inundated ones, were traditionally

considered rather homogeneous in terms of species composition (Encarnación,

1985; Pires and Prance, 1985; Salo et al., 1986). More recently, however, sev-

eral authors have shown that plant species composition in these forests is sig-5

nificantly related to physical and chemical characteristics of soils at different

spatial scales, from local to regional (Tuomisto et al., 1995, 2002, 2003a,b,c;

Ruokolainen et al., 1997; Phillips et al., 2003; Costa et al., 2005; Duque et al.,

2005; Bohlman et al., 2008). These findings have increased the need for a

more detailed identification and mapping of spatial variation in plant species10

composition to support rainforest conservation and land use planning efforts.

Interpretation of high resolution imagery, such as Landsat, is crucial for such

mapping to be possible over large areas.

Remote sensing of tropical rain forests is associated with several challenges,15

one of the most obvious being the persistent cloud cover in these high-rainfall

regions. Another challenge is that reflectance differences among forest types are

often subtle. This makes it necessary to utilize the 8-bit satellite imagery (such

as Landsat TM/ETM+) up to its radiometric limits, which in turn makes the

interpretations more prone to errors due to radiometric distortions (Toivonen20

et al., 2006; Higgins et al., 2011). The importance of a careful radiometric and

atmospheric correction is therefore evident.
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In recent years, especially since the opening of the Landsat archive (Wulder

et al., 2012), considerable effort has been put to the operational development25

and distribution of atmospherically corrected surface reflectance products (Roy

et al., 2010; Ju et al., 2012). Because of the narrow field of view of Land-

sat (7.5 ◦ each side of nadir), the bidirectional reflectance distribution function

(BRDF) effects are often ignored in the atmospheric correction, and a Lamber-

tian behaviour of the surface is assumed (Masek et al., 2006; Ju et al., 2012;30

Roy et al., 2014). However, studies over Amazonian forests have demonstrated

that directional scattering, which gives rise to an across-track gradient in digital

number, can nullify the spectral separability of different forest types (Toivonen

et al., 2006), or suggest the existence of vegetation patterns where none exist

(Ruokolainen and Tuomisto, 1998).35

Several authors have suggested methods for BRDF correction of Landsat im-

agery. Roy et al. (2008) developed a multi-temporal data fusion for Landsat and

MODIS using the MODIS BRDF/Albedo land surface characterization product

(Schaaf et al., 2002) to correct directional effects in Landsat. Given the vast ar-40

eas covered by closed canopy, this method can be expected to be applicable over

Amazonian forests in spite of the spatial resolution gap between both sensors.

A more severe restriction is the persistent cloud cover in tropical areas. Genera-

tion of MODIS BRDF parameters assumes the availability of several cloud-free

observations during a 16-day period. Even in the case of a cloudfree Landsat ac-45

quisition, the required number of MODIS observations during the adjacent days

may not be reached. Furthermore, no MODIS BRDF parameters are available

for the period before the start of MODIS operation in 2000. A different ap-

proach was suggested by Flood et al. (2013) for Landsat TM/ETM+ imagery

over Eastern Australia. This method exploits the availability of multi-temporal50

acquisitions over this region to calculate BRDF parameters at the Landsat spa-

tial resolution. Consequently, it is not applicable in areas with only occasional

cloud-free conditions.
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As an alternative to multi-sensor or multi-temporal approaches, empirical55

scene-based normalizations have been suggested by some authors (Toivonen

et al., 2006; Hansen et al., 2008). These derive the relationship between the po-

sition of a pixel in the image and its digital number or reflectance through linear

regression, and consecutively use this relationship to normalize the across-track

gradient. This method relies on a number of assumptions. Firstly, it is assumed60

that the BRDF, and the brightness variation it gives rise to, is linear over a

uniform land surface in Landsat’s narrow field of view. Secondly, it is assumed

that there are no east-west gradients in the imagery other than those caused

by directional reflectance effects. Hansen et al. (2008) aimed to ensure this by

deriving the regression coefficients only for forested pixels (as inferred from a65

MODIS forest mask), rather than for all pixels in the scene. However, not all

forests are identical, and gradual or abrupt changes in floristic composition may

exist and affect reflectance properties even within forested areas, and this could

invalidate the empirical correction.

70

In this study, we investigate the reliability of empirical across-track re-

flectance gradient corrections for two regions in Peruvian and Brazilian Amazo-

nia. First, we use in situ data on floristic composition to test if adequate cor-

rections of Landsat TM/ETM+ imagery is obtained using simple linear models,

and if variation in species composition of the forest confounds the correction.75

Then we test an earlier suggestion (Toivonen et al., 2006) that the radiometric

gradient has different magnitudes over different kinds of forest in Amazonia.

If different corrections are needed for different kinds of forest, the demand for

ground truth data would increase and routine radiometric correction be severely

hampered. We use a large image dataset combined with geological data (which80

acts as proxy for forest species composition) to quantify how much error is in-

troduced if compositional variation in the forest is ignored. This will help in

assessing whether or not these relatively simple, empirical angular normalization

techniques are appropriate for a given application.
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2. Study area and data sets85

2.1. Study area

This study was conducted in tropical rain forests of the Amazonian lowlands

in northern Peru and western Brazil (Fig. 1). The area is covered largely by

undisturbed primary terra firme (non-inundated) forest under closed canopy.

Areas that are sporadically, seasonally or permanently inundated occur along90

rivers. Climate is tropical, humid, and almost aseasonal. In the city of Iquitos,

which is situated near the Peruvian study area, the mean monthly tempera-

ture is 25–27 ◦C throughout the year and annual precipitation is approximately

3100 mm (Marengo, 1998). The city of Eirunepé, near the Brazilian site on the

Juruá River, experiences a mean monthly temperature of approximately 25 ◦C95

and an annual precipitation of 2195 mm (http://inmet.gov.br/portal/ ). Eleva-

tion ranges from 100 to 250 m above sea level in most of the study area, with a

few precipitously hilly areas exceeding 400 m.

Two geological formations are exposed at the surface over most of the study100

area. These are known in Peru as the Pebas Formation and the Nauta For-

mation, and in Brazil as the Solimões Formation and the Içá Formation, re-

spectively. For clarity, only the Peruvian names will be used here. The Pebas

Formation consists of poorly weathered, relatively cation-rich (by Amazonian

standards) clay sediments that were deposited under low-energy semi-marine or105

lacustrine conditions of the Pebas Embayment. The Nauta formation consists of

more weathered, cation-poor sediments with coarser texture that were deposited

on top of the Pebas Formation under higher-energy deltaic to fluvial conditions

(Räsänen et al., 1995; Rebata-H. et al., 2006). The cation concentration in the

soils derived from the Pebas Formation is about one order of magnitude higher110

than that in the Nauta Formation. This difference in soils is reflected in the

species composition of the primary terra firme forest, and gives rise to a plant

species turnover of 80–90 % across the geological boundary (Higgins et al., 2011).

A third distinct unit of the terra firme landscape is formed by river terraces of
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sedimentary deposits from Andean origin dated from mid/late Pleistocene. In115

terms of sedimentation environment and soil nutrient content, the terraces are

similar to the Nauta formation. The main differences between the two is that

terraces are practically flat in topography (Irion and Kalliola, 2009).

The digitized geological maps used in this study were obtained from the Insti-120

tuto Geológico Minero y Metalúrgico (INGEMMET, http://www.ingemmet.gob.pe)

and the Geological Survey of Brazil (CPRM, http://geobank.sa.cprm.gov.br).

The boundaries between the Pebas and Nauta Formations in these maps were

modified according to the discontinuity identified in Landsat imagery and Shut-

tle Radar Topography Mission (SRTM) elevation data (Higgins et al., 2011).125

2.2. Floristic data

The surface reflectance of dense forests, as observed by satellite sensors op-

erating in the optical domain, is mostly determined by properties of the forest

canopy, including tree species composition. Because collection of field data on

canopy species composition in these high-diversity forests is difficult and time130

consuming, approaches have been developed to use floristic variation in more

easily observable understory plant groups as indicators of floristic variation in

canopy trees (Ruokolainen et al., 1997, 2007). Here we use a floristic dataset of

two such indicator groups, pteridophytes (ferns and lycophytes) and the Melas-

tomataceae. Both groups have been found to reproduce well the floristic pat-135

terns observed in trees (Tuomisto et al., 1995; Ruokolainen et al., 1997, 2007).

The data have been inventoried using a standard procedure (Tuomisto et al.,

2003a), where presence-absence of different species was recorded along 500 m

long and 5 m wide transects. Two sets of such transects are used here: 105

transects in Peru, inventoried in 2005–2006 and 45 transects in Brazil, inven-140

toried in 2012. Both sets were purposefully placed to sample the Pebas/Nauta

boundary, and eleven of the Brazilian transects sample terraces of the Juruá

and Tarauacá rivers (Fig. 1). The Peruvian dataset is described in more detail

in (Higgins et al., 2011) and (Higgins et al., 2012).
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2.3. Landsat data145

Two sets of Landsat TM/ETM+ images are used here. The first consists of

two image mosaics, one covering the Peruvian and the other covering the Brazil-

ian field inventory sites (Fig. 1). The five selected and visually inspected cloud-

free Level 1T images used to produce these mosaics (Table 1) were obtained

through the USGS EarthExplorer website (http://earthexplorer.usgs.gov/ ). For150

the Brazilian study area, the two images were acquired during the same over-

pass, so they could be easily combined into a seamless mosaic. For the Peruvian

site, two images were obtained during the same overpass, but the third was

acquired 17 days, and seven years, later and was normalized with respect to the

other two images using histogram matching in the area of overlap. The seasonal155

17 day gap between the acquisitions is sufficiently small to ensure that vegetation

throughout the mosaic is at the same phenological state. Due to the persistent

cloud cover, there were no images available from these adjacent paths with a

gap smaller than seven years, with such a small seasonal difference. Also, there

is a time gap between the acquisition of the images and the field data collection160

for both sites. However, since the study sites are in undisturbed forests, it can

be expected that no changes in floristic composition occurred during this period.

Table 1: Landsat L1T images used to construct the mosaics

Area Path Row Date Sensor Azimuth Solar elevation

Peru 7 62 21/08/1999 ETM+ 62.6001968 56.7000504

Peru 7 63 21/08/1999 ETM+ 60.8536224 55.8320427

Peru 8 62 08/09/2006 TM 73.3150337 60.4587121

Brazil 3 64 04/08/2006 TM 52.5639618 51.7608786

Brazil 3 65 04/08/2006 TM 51.3322926 50.6973778

The second image dataset comprises 45 predominantly cloud-free Landsat

TM/ETM+ images acquired between 1987 and 2011 throughout the year. Sev-165
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enteen, 14 and 14 acquisitions were used for the scenes with path/row combi-

nation 003/064, 007/062 and 008/062, respectively. These three scenes cover

a boundary of the Pebas and Nauta formations in Brazil and northern Peru.

Contrary to the two mosaics described above, for which the original Landsat

images were used, we here downloaded the Landsat Surface Reflectance Climate170

Data Record (CDR) images through EarthExplorer portal.

These are generated using the Landsat Ecosystem Disturbance Adaptive

Processing System (LEDAPS, version 2.1.0) algorithm which includes conver-

sion of radiance to reflectance values and application of the MODIS atmospheric

correction (Masek et al., 2006). As a result, reflectance differences resulting175

from varying atmospheric conditions between images acquired during different

seasons are minimised. The CDR images are accompanied by a number of auto-

matically generated mask bands. Pixels that were flagged in any of the bands as

cloud, cloud shadow, cloud buffer, or water were excluded from further analyses.

Seasonally inundated forests were also masked based on the available geological180

maps.

3. Methods

3.1. Quantification of floristic gradient

The field inventory resulted, for each 5 m by 500 m transect, in a listing of

the presence or absence of species of ferns, lycophytes and Melastomataceae.185

Typically plant species occurrences are correlated with each other so that one

can reduce the dimensionality of the data table by finding eigenvectors that sum-

marize the intercorrelated descriptors (species). A simple principal components

analysis is, however, not an ecologically suitable method because both ecolog-

ical theory and empirical data show that species abundances have unimodal190

responses to environmental variables (Legendre and Legendre, 1998). Therefore

we first calculated an ecologically meaningful species compositional distance

(one-complement of Jaccard index of similarity (Jaccard, 1912)) between each

pair of transects separately for the Peruvian and Brazilian transects. Then
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we used non-metric multidimensional scaling analysis (NMDS) (Legendre and195

Legendre, 1998) for finding the best possible unidimensional representation of

the multidimensional variation in each of the two data matrices. NMDS is an

iterative method that aims to map objects (transects) into a specified number

of dimensions such that the rank order of the distances as measured from the

ordination solution are as similar as possible to those in the original dissimilarity200

matrix. The NMDS scores obtained for the Peruvian dataset have previously

been observed to closely correlate with soil cation concentration (Higgins et al.,

2011, 2012).

3.2. Testing the linearity and forest-type independence of BRDF

In order to test both the linearity of the BRDF for the limited swath width of205

Landsat and the forest-type independence of the empirically observed reflectance

gradient, we fitted a cubic trend surface (Borcard et al., 1992) to the floristic

data and remotely sensed data of the sampling sites:

DN = a+ bΓ + cν + dΓν + eΓ 2 + fν2 + gΓν2 + hΓ 2ν + iΓ 3 + jν3 , (1)

where DN is the Landsat digital number corresponding to the sampling site,

Γ is the column number corresponding to the site, and ν is the NMDS-score of210

the site (all unitless).

In order to obtain a representative DN for each 5 m by 500 m field sam-

pling transect, we first made a multiband segmentation on each Landsat mosaic

(Fig. 2). The segmentation was performed in eCognition v8.8, with parameters

Scale=20, Shape=0.4, and Compactness=0.4 (all unitless). A representative215

DN of each band was then calculated the as a weighted average of the DN

means of segments that the transect traversed. The weight of each segment was

the proportional length of the transect overlying the segment. Through this

procedure we acknowledge that local edaphic variation can control plant species

composition at spatial resolutions smaller than our 500-m-long sampling tran-220

sects (Tuomisto et al., 1995; Poulsen et al., 2006), and that edaphically induced
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floristic variation is detectable in DN values (Tuomisto et al., 1995, 2003a; Hig-

gins et al., 2011; Thessler et al., 2005). Segmentation also removes undesired

noise that can result from small-scale topographic features, while keeping the

directional component unaffected. Column number Γ was calculated as the per-225

pendicular distance from the centroid of the segment to the western edge of the

Landsat mosaic.

In the first step, only the two first terms of Eq. 1 were used to build the

model. This model captures the proportion in DN variance that is linearly230

explained by Γ . In the next step, the term in ν was added to the model to

capture the proportion of DN variance that is explained by column number and

NMDS-score together but without any interaction between the two. Finally,

the remaining terms were added step-wise into the model, starting from the

ones with the largest adjusted coefficient of determination (R̄2) and proceeding235

to those with smaller R̄2 until the next one to be added was not statistically

significant (p = 0.05). The assumption of linearity can be accepted if the ad-

dition of higher order polynomial terms containing the column number Γ does

not increase the adjusted coefficient of determination. On the other hand, if

adding first or higher order terms containing NMDS score ν increases R̄2, then240

floristic variation within the rain forest can be concluded to influence the em-

pirical estimation of the across-track reflectance gradient. This analysis was

performed separately for the Peruvian and Brazilian study areas and for each

spectral band.

3.3. Comparison of reflectance gradient for different geological formations245

The magnitude of the reflectance gradient is influenced by the optical prop-

erties of the surface. Different species of the forest canopy may have different

canopy structures, leaf angles and various leaf and bark characteristics that

affect reflectance. Therefore, floristically distinct forests may present differ-

ent reflectance anisotropy and magnitudes of the reflectance gradient. To test

whether this is the case, the difference in the magnitude of the gradient be-
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tween terra firme forests on the Pebas and Nauta formations was analysed for

the 45 Landsat surface reflectance images. No field data was available to ver-

ify the existence of floristic difference between forests on the Pebas and Nauta

formations in these images, so the interpretations of the results are based on

two assumptions: 1) the limit between the two formations is correctly shown

in the available geological maps, and 2) the floristic patterns follow the limit

between the geological formations in the same way as has been documented for

other areas. To reduce the uncertainty related to the first point, each image was

visually screened and transitional areas between the two geological formations

and between non-inundated and inundated areas were manually masked and

excluded from the analysis. For each image, and for each spectral band, the

slope b (unitless) of the reflectance gradient was derived as follows:

ρ = a+ bΓ , (2)

where ρ is the surface reflectance of the pixel. In each of the 45 Landsat images,

20,000 randomly selected pixels were placed over forested areas, half on the

Pebas Formation and half on the Nauta Formation. Additionally, the reflectance

gradient was calculated for each image without stratification into Pebas and

Nauta, but with masking of other formations such as terraces or floodplain250

forests.

Empirical reflectance gradients over tropical forests have been found to vary

throughout the year (Hansen et al., 2008). These variations may be caused by

changes in sun-sensor-geometry, seasonally varying atmospheric conditions or

vegetation phenology. Amazonian tropical forests are characterized by moderate255

phenological cycles (Silva et al., 2013), driven by seasonal changes in tempera-

ture and precipitation. It is not known to what extent Amazonian vegetation

phenology influences directional scattering for the range of Landsat view angles,

and this is beyond the scope of this research. However, it can be assumed that,

within the limited extent of a single Landsat scene, spatial variability of temper-260

ature and rainfall is low. Phenological cycles of different types of terra firme will

therefore be similar. We derive and compare the empirical reflectance gradient
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for the Pebas and Nauta formation for each of the 45 Landsat images separately.

The influence of varying sun-sensor geometry, seasonally varying atmospheric

conditions and forest phenology will be similar for the two formations in each265

of the individual 45 comparisons. Therefore it is meaningful to analyse if the

reflectance gradient consistently differs between the two formations.

4. Results

4.1. Floristic gradient

Fig. 3 shows scatterplots of the unidimensional NMDS scores versus column270

number for the Peruvian and Brazilian sites. The NMDS scores of the sites

on the Pebas Formation are generally higher than those of sites on the Nauta

Formation. In addition, in both image mosaics the NMDS scores decrease from

west to east within each geological formation, and also within the terrace surface

in Brazil. This indicates that there is an east-west trend in floristic composi-275

tion, which is associated with a similar spatial trend in soil cation concentration

(Higgins et al., 2011, 2012; Tuomisto). There is also a general geologically con-

trolled trend in Amazonian rain forest area of decreasing soil fertility from west

to east (Räsänen et al., 1995; Hoorn et al., 2010).

280

How digital numbers corresponding to each transect relate to column number

and NMDS score is shown in Fig. 4 for the Peruvian transects , and Fig. 5 for

the Brazilian. The value of the third variable (NMDS score for the Γ -DN plot,

column number for the ν-DN plot) is indicated by colours. These figures show

that erroneous conclusions may be drawn when only one explanatory variable285

is taken into account. E.g., a strong possible correlation between NMDS score

and digital number could be suggested when anisotropy is ignored. In reality,

however, the increase in NMDS score with increasing column number is only

limited —if present at all— for a given small range of column numbers. The

decrease of digital number with increasing column number, on the other hand,290

is the result of an interplay of effects of anisotropy and floristic composition.
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4.2. Reflectance gradient modelling

Adjusted coefficients of determination of the iterative application of Eq. 1

are given in Table 2. Regressions with pixel value as the dependent variable

and the first order term of column number as the only explanatory variable295

gave consistently high R̄2 values. Adding the first order term of the NMDS

score did not improve the R̄2 for visible light bands in either study area, but for

the infrared bands it did. Then R̄2 increased most for band 4 in Peru (0.102)

and for band 7 in Brazil (0.051); for in the other bands, increase in R̄2 was

detectable but rather small (0.017–0.022). Adding higher order terms of the300

NMDS score increased R̄2 little or not at all, except for band 4 in Brazil, where

the increase was 0.154.

4.3. Pebas/Nauta difference of the reflectance gradient

An empirical reflectance gradient for the forests on the two geological forma-

tions (Pebas and Nauta) was obtained by regressing surface reflectance against305

column number (Eq. 2) using 10,000 random points for each geological forma-

tion. This was done separately for each of the 45 Landsat images and each

spectral band. Mean slopes and standard deviations of these gradients are

given in Table 3, together with the differences between the mean slopes on the

Pebas and Nauta formations. A paired t-test was performed to check if sig-310

nificant differences between the slopes on the two formations exist. Because

the Shapiro-Wilks test for normality indicated that 10 out of 24 Pebas For-

mation datasets and 4 out of 24 Nauta Formation datasets were not normally

distributed (at p=0.05), the non-parametric Wilcoxon signed-rank test was also

used. Results of the t-test and the Wilcoxon test were almost identical, how-315

ever. Both revealed significant differences (at p=0.05) between the mean slopes

in the infrared bands for scenes 003/064 and 008/062. In scene 003/064, the

reflectance gradient is stronger (more negative) for the Pebas than for the Nauta

Formation which gives a negative difference, but in scene 008/062 the situation

was reversed and the difference was positive. As a result, differences for all data320
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pooled are much smaller, and not significant for either test at p=0.05.

In Table 4, the slopes obtained for the Pebas and Nauta formation are com-

bined to calculate a stratified reflectance gradient. This is simply done by, for

each image, taking the average of the slopes as measured over the Pebas and325

Nauta formations separately. The stratified slopes are then compared to the

unstratified slopes, which were obtained by linear regression of digital number

versus column number for pixels over both formations combined. A significant

difference between the stratified and unstratified slopes can be observed for the

green bands and all infrared bands, for each of the image scenes. The sign330

of this difference is opposite for the Brazilian scene 003/064 with respect to

the two Peruvian scenes. Differences between stratified and unstratified slopes

are linked to the relative spatial pattern of the two geological formations and

the associated forest cover. In the Brazilian scene, the Nauta Formation (with

forests of lower reflectance in the infrared) dominates the eastern side of the335

image and the Pebas Formation (with forests of higher reflectance) the western

side. In the Peruvian scenes, the situation is the opposite. In addition, the ge-

ological interface is oriented in a northwest-southeast direction in the Peruvian

site but north-south (almost perpendicular to the Landsat scan direction) in the

Brazilian site. This results in a much larger difference between the stratified340

and unstratified slopes in the Brazilian scenes.

5. Discussion

Our analyses showed that the single most important predictor of the digital

numbers corresponding to in situ sampling sites in terra firme forests was the

east-west position of the site in a Landsat mosaic. The largest part of the vari-345

ability in DN was explainable as a linear function of column number (Γ ). This

was the case for all spectral bands and in both study areas (Brazil and Peru).

The increase in R̄2 when higher-order polynomial terms of column number were

added to the model was small or statistically insignificant. This result suggests
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that a linear relationship between column number —which represents sensor350

view angle— and image digital number —which represents surface reflectance—

can be used to correct for bidirectional reflection distribution function (BRDF)

in Landsat images over Amazonian terra firme forests. The same principle may

be applicable to other high resolution imagery with a similar swath width.

355

It should be noted that the topography in our study area is relatively flat.

At the local scale, the slopes of the hills can be steep, but as the hills themselves

rarely exceed 50 m in height, their effect on surface reflectance is smaller than

in areas of truly accented topography. There is a discontinuity in this respect

between the Pebas and Nauta Formation, as the former typically has flatter360

topography than the latter. With increasing topographic relief, the range of

possible sun-terrain-sensor configurations will increase. At some point it will

then become necessary to apply more complex topographic/BRDF corrections,

and these may be non-linear (Li et al., 2012; Flood et al., 2013).

365

We found that digital numbers of the blue, green and red Landsat bands

were unrelated to floristic composition, as represented by the NMDS scores (ν).

This is in accordance with the findings of Higgins et al. (2012) who stated that

“no information about floristic patterns is lost by excluding bands 1–3 from

image display and manual image interpretation”. Data in the visible bands can,370

however, assist in discriminating primary forest from other land cover types

(Sesnie et al., 2010).

In the near and shortwave infrared bands, addition of NMDS scores (which

represent position along the main floristic gradient observed in the forests) in the375

iterative regression analysis increased R̄2 in both study areas. In other words,

differences in floristic composition can be observed using the relatively limited

spectral and radiometric resolution of the Landsat TM/ETM+ sensors. This

has implications for simple, scene-based empirical BRDF correction methods

such as those suggested by (Hansen et al., 2008). It was shown in Fig. 3 that a380
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floristic east-west gradient exists in both study sites. This creates a natural, real

trend of reflectance values in the near and shortwave infrared wavelengths that

coincides with the reflectance gradient resulting from reflectance anisotropy.

Such covariation can result in an over- or underestimation of the magnitude of

either one gradient if it is studied without considering the other.385

When the empirical reflectance gradient was derived over forests covering

the Pebas and Nauta formation separately, pooling all the images, no signif-

icant difference between their slopes could be found for any of the visible or

infrared bands. Significant differences in the infrared bands were detected for390

two of the three scenes, albeit with different signs. These may result from

scene-specific properties such as subtle topographic or floristic patterns within

a single geological formation, residual atmospheric contamination in some im-

ages, or unmasked clouds and cloud shadows. In conclusion, even though plant

species compositions on the two formations are very different, this seems to395

have little or no effect on the directional scattering properties of the vegetation

canopy for the limited swath width of the Landsat sensor.

Even though reflectance gradients obtained for the Pebas and Nauta forma-

tion are quite similar, it is important to notice that there is a difference in the400

absolute reflectance of the forest types covering these formations. If such floris-

tic patterns are not taken into account when calculating an empirical reflectance

gradient for a Landsat scene, the obtained model may differ significantly from

what is needed for a correct normalization of viewing angle effects. In this study,

the maximum difference between the unstratified and the stratified reflectance405

gradient was approximately 3× 10−6, or more than 50 % of the stratified gradi-

ent. A single Landsat image has a width of approximately 8000 columns. When

using the unstratified instead of the more reliable stratified reflectance gradient

for normalization to zenith view angle (maximum 4000 columns), an error in

corrected surface reflectance of up to 1.2 % is introduced in the NIR band. This410

can be enough to hamper image interpretation or classification when studying
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subtle floristic patterns.

The magnitude of the difference between stratified and unstratified slopes

can be expected to be related to the orientation of the boundary between forest415

types. To remove the reflectance gradient from Landsat images over regions

characterized by a north-south-oriented interface between geological/floristic

formations, an empirical gradient should be determined after stratification of

the satellite image according to geology. Since no consistent significant difference

in the slope was found for the two different formations, the average value over420

these strata could be used to normalize the entire scene. In the case of east-west-

oriented boundaries between formations, such stratification is not necessary,

since the difference between the stratified and unstratified reflectance gradients

will be small. Effects of gradual vegetation changes within a single geological

formation are not accounted for using this approach. These can be expected to425

be smaller than those between across-formations effects (Fig. 3), and in addition

their verification would require more extensive field data.

6. Conclusions

This paper aimed at investigating the validity of empirical, linear, scene-

based view angle normalization approaches for Landsat data over Amazonian430

rainforest. Such a radiometric correction is indispensable for the correct classi-

fication of different primary terra firme forest types, which are radiometrically

very similar. We investigated the interrelation between floristic gradients and

reflectance gradients introduced by the bidirectional reflection distribution func-

tion with the help of an extensive dataset of in situ field observations of indicator435

species. Results showed that the reflectance of a pixel is largely defined by its

position in the Landsat image in the east-west direction, and that this rela-

tionship can be considered to be linear for the limited swath width of Landsat

TM/ETM+. For the infrared bands, but not for the visible light bands, surface

reflectance was also related to floristic composition. Therefore, empirical view440
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angle corrections need to take the floristic variation in the forests into account

to avoid producing erroneous results. A second part of this study investigated

whether different forest types, identified by the geologic formation on which

they grow, are characterized by a similar magnitude of the BRDF-induced re-

flectance gradient. No consistent differences could be found for the reflectance445

gradient in any spectral band.

Extensive floristic datasets, as the one used in this study, are generally

not available for image preprocessing over extensive areas. Whether simple

regression-based angular corrections that ignore floristic variability are appro-

priate depends on the application. If the aim of a study is to map deforestation,450

the radiometric errors introduced by ignoring floristic variation are probably

trivial. If the aim is to map the floristic variation itself, the errors can be

detrimental. A possible improvement for empirical view angle normalization

methods could be to first stratify the images based on geological data, which

can serve as a rough proxy for vegetation composition, and deriving view angle455

correction coefficients based on these strata.
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Figure 1: Locations of the Landsat images used, with indication of path/row combination, the

main geological formations in the study area, and the sampling sites where floristic information

was collected.

25



0 52.5 Km

Figure 2: Example of image segmentation for the Peruvian study site (red=band 4, blue=band

5, green=band 7). Straight black lines indicate the field sampling transects and blue polygons

the segments used to derive digital numbers corresponding to each transect.
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Table 2: R̄2 values for the iterative regression analyses between digital number and column

number (Γ ) and NMDS score (ν), for the Peruvian and Brazilian Landsat TM/ETM+ mosaics.

Peru Brazil

Predictors R̄2 Predictors R̄2

B
an

d
1

Γ 0.924 Γ 0.848

Γ + ν 0.923 Γ + ν 0.845

Γ + ν + Γ 2 0.940

Γ + ν + Γ 2 + Γ 3 0.972

B
a
n

d
2

Γ 0.857 Γ 0.823

Γ + ν 0.857 Γ + ν 0.820

Γ + ν + Γ 2 0.875

Γ + ν + Γ 2 + Γ 3 0.927

Γ + ν + Γ 2 + Γ 3 + ν3 0.929

B
a
n

d
3

Γ 0.842 Γ 0.723

Γ + ν 0.848 Γ + ν 0.717

Γ + ν + Γ 2 0.879

Γ + ν + Γ 2 + Γ 3 0.905

B
a
n

d
4

Γ 0.779 Γ 0.729

Γ + ν 0.881 Γ + ν 0.746

Γ + ν + Γν 0.890 Γ + ν + Γν 0.885

Γ + ν + Γν + Γν2 0.903 Γ + ν + Γν + Γν2 0.900

B
an

d
5

Γ 0.936 Γ 0.869

Γ + ν 0.956 Γ + ν 0.891

Γ + ν + Γν 0.958 Γ + ν + Γ 2 0.908

Γ + ν + Γν + Γ 2ν 0.961

Γ + ν + Γν + Γ 2ν + ν3 0.963

B
an

d
7

Γ 0.933 Γ 0.848

Γ + ν 0.951 Γ + ν 0.899

Γ + ν + Γν 0.953 Γ + ν + Γ 2 0.907

Γ + ν + Γν + Γ 2ν 0.958
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Table 3: Means and standard deviations of the slopes of linear regression of reflectance versus

column number over Pebas and Nauta formation forests and the difference between their

means (all unitless and all ×106) for each Landsat TM/ETM+ band, per scene and for

all scenes pooled. Asterisks indicate non-normal distribution according to Shapiro-Wilks

test, superscripts t and w indicate significant differences for the t-test and Wilcoxon test,

respectively (all at p=0.05).

Pebas Nauta

Scene Band Mean St. dev. Mean St. dev. Difference

003/064 1 -0.9299 1.1181* -0.5280 0.7060 -0.4020

2 -0.7840 0.8208* -0.4204 0.5329 -0.3636

3 -0.2456 0.3708 -0.1574 0.4669 -0.0882

4 -6.1178 2.5038 -3.3766 1.0596 -2.7412t,w

5 -4.0358 1.3477* -2.9620 0.7976 -1.0738t,w

7 -1.8789 0.6976* -1.2619 0.4385 -0.6170t,w

007/062 1 -1.0706 0.5193 -0.8320 0.6532 -0.2386

2 -0.9853 0.4352 -0.7761 0.5046 -0.2093

3 -0.5138 0.4091 -0.2923 0.5388 -0.2215t

4 -6.9189 2.1561 -7.0125 1.4243 0.0936

5 -4.2102 0.7976 -4.5051 0.7818 0.2949

7 -1.8172 0.5909 -1.9635 0.6023 0.1463

008/062 1 -0.6820 1.5101* -0.7758 0.8906* 0.0938

2 -0.6617 1.1511* -0.8976 0.6292* 0.2359

3 -0.1517 0.9404* -0.2192 0.5173* 0.0676

4 -6.6532 1.7389 -8.9520 1.8638 2.2987t,w

5 -3.9889 0.9475 -4.5632 1.0401 0.5742t,w

7 -1.9235 0.5365 -2.0963 0.4808 0.1728t,w

Combined 1 -0.8966 1.1103* -0.6996 0.7486 -0.1969

2 -0.8086 0.8423* -0.6795 0.5827* -0.1290

3 -0.2998 0.6192* -0.2186 0.4973 -0.0812

4 -6.5336 2.1599 -6.2423 2.7806 -0.2913

5 -4.0755 1.0594 -3.9402 1.1516 -0.1353

7 -1.8736 0.6058 -1.7398 0.6245 -0.1338
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Table 4: Means and standard deviations of the slopes of linear regression of reflectance versus

column number, either stratified based on geological formation or unstratified, and the dif-

ference between their means (all unitless and all ×106) for each Landsat TM/ETM+ band,

per scene. Asterisks indicate non-normal distribution according to Shapiro-Wilks test, super-

scripts t and w indicate significant differences for the t-test and Wilcoxon test, respectively

(all at p=0.05).

Stratified Unstratified

Scene Band Mean St. dev. Mean St. dev. Difference

003/064 1 -0.7289 0.5625 -0.7373 0.4008 0.0084

2 -0.6022 0.4596 -0.7815 0.3730 0.1793t,w

3 -0.2015 0.3091* -0.2053 0.2714* 0.0038

4 -4.7472 1.5206 -7.6987 1.7555 2.9514t,w

5 -3.4989 1.0215 -5.0451 1.1189 1.5461t,w

6 -1.5704 0.5403 -2.4040 0.6357 0.8336t,w

007/062 1 -0.9513 0.5429 -0.9248 0.4326 -0.0264

2 -0.8807 0.4151 -0.7552 0.3266 -0.1256t,w

3 -0.4031 0.4421 -0.3920 0.3441 -0.0110

4 -6.9657 1.5497 -5.6448 1.4250 -1.3209t,w

5 -4.3576 0.6684 -3.7911 0.6432 -0.5665t,w

6 -1.8904 0.5392 -1.6300 0.5198 -0.2604t,w

008/062 1 -0.7289 1.1833* -0.7317 1.1708* 0.0028

2 -0.7797 0.8746* -0.7016 0.8481* -0.0780t,w

3 -0.1855 0.7149* -0.2206 0.7004* 0.0351

4 -7.8026 1.5830 -6.4770 1.6745 -1.3257t,w

5 -4.2760 0.9587 -3.7931 1.0045 -0.4829t,w

6 -2.0099 0.4930 -1.7369 0.5099 -0.2730t,w
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